Healthy sleep supports robust development of the brain and behavior. Modern society presents a host of challenges that can impair and disrupt critical circadian rhythms that reinforce optimal physiological functioning, including the proper timing and consolidation of sleep. While the acute effects of inadequate sleep and disrupted circadian rhythms are being defined, the adverse developmental consequences of disrupted sleep and circadian rhythms are understudied. Here, we exposed mice to disrupting light–dark cycles from birth until weaning and demonstrate that such exposure has adverse impacts on brain and behavior as adults. Mice that experience early-life circadian disruption exhibit more anxiety-like behavior in the elevated plus maze, poorer spatial memory in the Morris Water Maze, and impaired working memory in a delayed match-to-sample task. Additionally, neuron morphology in the amygdala, hippocampus and prefrontal cortex is adversely impacted. Pyramidal cells in these areas had smaller dendritic fields, and pyramidal cells in the prefrontal cortex and hippocampus also exhibited diminished branching orders. Disrupted mice were also hyperactive as adults, but otherwise exhibited no alteration in adult circadian locomotor rhythms. These results highlight that circadian disruption early in life may have long lasting and far-reaching consequences for the development of behavior and the brain.
Healthy sleep supports robust development of the brain and behavior. Modern society presents a host of challenges that can impair and disrupt critical circadian rhythms that reinforce optimal physiological functioning, including the proper timing and consolidation of sleep. While the acute effects of inadequate sleep and disrupted circadian rhythms are being defined, the adverse developmental consequences of disrupted sleep and circadian rhythms are understudied. Here, we exposed mice to disrupting light-dark cycles from birth until weaning and demonstrate that such exposure has adverse impacts on brain and behavior as adults. Mice that experience early-life circadian disruption exhibit more anxiety-like behavior in the elevated plus maze, poorer spatial memory in the Morris Water Maze, and impaired working memory in a delayed match-to-sample task. Additionally, neuron morphology in the amygdala, hippocampus and prefrontal cortex is adversely impacted. Pyramidal cells in these areas had smaller dendritic fields, and pyramidal cells in the prefrontal cortex and hippocampus also exhibited diminished branching orders. Disrupted mice were also hyperactive as adults, but otherwise exhibited no alteration in adult circadian locomotor rhythms. These results highlight that circadian disruption early in life may have long lasting and far-reaching consequences for the development of behavior and the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.