Perennial grass energy crop production is necessary for the successful and sustainable expansion of bioenergy in North America. Numerous environmental advantages are associated with perennial grass cropping systems, including their potential to promote soil carbon accrual. Despite growing research interest in the abiotic and biotic factors driving soil carbon cycling within perennial grass cropping systems, soil fauna remain a critical yet largely unexplored component of these ecosystems. By regulating microbial activity and organic matter decomposition dynamics, soil fauna influence soil carbon stability with potentially significant implications for soil carbon accrual. We begin by reviewing the diverse, predominantly indirect effects of soil fauna on soil carbon dynamics in the context of perennial grass cropping systems. Since the impacts of perennial grass energy crop production on soil fauna will mediate their potential contributions to soil carbon accrual, we then discuss how perennial grass energy crop traits, diversity, and management influence soil fauna community structure and activity. We assert that continued research into the interactions of soil fauna, microbes, and organic matter will be important for advancing our understanding of soil carbon dynamics in perennial grass cropping systems. Furthermore, explicit consideration of soil faunal effects on soil carbon can improve our ability to predict changes in soil carbon following perennial grass cropping system establishment. We conclude by addressing the major knowledge gaps that should be prioritized to better understand and model the complex connections between perennial grass bioenergy systems, soil fauna, and carbon accrual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.