Allosteric modulation of G-protein–coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A 4 is an endogenous allosteric enhancer of the CB 1 cannabinoid receptor. Lipoxin A 4 was detected in brain tissues, did not compete for the orthosteric binding site of the CB 1 receptor (vs. 3 H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating the effects of this endocannabinoid both in vitro and in vivo. In addition, lipoxin A 4 displayed a CB 1 receptor-dependent protective effect against β-amyloid (1–40)-induced spatial memory impairment in mice. The discovery of lipoxins as a class of endogenous allosteric modulators of CB 1 receptors may foster the therapeutic exploitation of the endocannabinoid system, in particular for the treatment of neurodegenerative disorders.
Resolvins of the D series are generated from docosahexaenoic acid, which are enriched in fish oils and are believed to exert beneficial roles on diverse inflammatory disorders, including inflammatory bowel disease (IBD). In this study, we investigated the anti-inflammatory effects of the aspirin-triggered resolvin D1 (AT-RvD1), its precursor (17(R)-hydroxy docosahexaenoic acid [17R-HDHA]) and resolvin D2 (RvD2) in dextran sulfate sodium (DSS)- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Our results showed that the systemic treatment with AT-RvD1, RvD2, or 17R-HDHA in a nanogram range greatly improved disease activity index, body weight loss, colonic damage, and polymorphonuclear infiltration in both colitis experimental models. Moreover, these treatments reduced colonic cytokine levels for TNF-α, IL-1β, MIP-2, and CXCL1/KC, as well as mRNA expression of NF-κB and the adhesion molecules VCAM-1, ICAM-1, and LFA-1. Furthermore, AT-RvD1, but not RvD2 or 17R-HDHA, depended on lipoxin A4 receptor (ALX) activation to inhibit IL-6, MCP-1, IFN-γ, and TNF-α levels in bone marrow-derived macrophages stimulated with LPS. Similarly, ALX blockade reversed the beneficial effects of AT-RvD1 in DSS-induced colitis. To our knowledge, our findings showed for the first time the anti-inflammatory effects of resolvins of the D series and precursor 17R-HDHA in preventing experimental colitis. We also demonstrated the relevant role exerted by ALX activation on proresolving action of AT-RvD1. Moreover, AT-RvD1 showed a higher potency than 17R-HDHA and RvD2 in preventing DSS-induced colitis. The results suggest that these lipid mediators possess a greater efficacy when compared with other currently used IBD therapies, such as monoclonal anti-TNF, and have the potential to be used for treating IBD.
Cannabinoid receptor 2 (CB2) activation is suggested to trigger the peroxisome proliferator-activated receptor-␥ (PPAR␥) pathway, and agonists of both receptors improve colitis. Recently, the plant metabolite (E)--caryophyllene (BCP) was shown to bind to and activate CB2. In this study, we examined the antiinflammatory effect of BCP in dextran sulfate sodium (DSS)-induced colitis and analyzed whether this effect was mediated by CB2 and PPAR␥. Oral treatment with BCP reduced disease activity, colonic macro-and microscopic damage, myeloperoxidase and N-acetylglucosaminidase activities, and levels and mRNA expression of colonic tumor necrosis factor-␣, IL-1, interferon-␥, and keratinocyte-derived chemokine. Inflammatory bowel diseases (IBDs) are a group of chronic diseases that affect the gastrointestinal tract and have been mainly subdivided as ulcerative colitis and Crohn's disease. 1 The IBDs are characterized by a strong leukocyte activation and infiltration into the intestinal tissues, the release of proinflammatory cytokines 2 and enzymes, and the formation of reactive oxygen species. All of these events can induce an extensive and unbalanced activation of the mucosal immune system, driven by the commensal flora. 3 Recent evidence suggests a role for the cannabinoid system in IBD regulation. Cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed in normal human colon 4,5 and are up-regulated in IBD colonic tissue. In addition, an enhanced level of endocannabinoids was found in biopsy specimens from patients with ulcerative colitis. 5 It is thought that CB1 activation results in a decrease of intestinal hypermotility and hypersecretion, whereas the activation of CB2 results in the inhibition of proinflammatory mediators. In addition, both CB2 and CB1 knockout mice are more susceptible to the development of experimental colitis, and the activation of these receptors is extremely important for the abrogation of intestinal inflammation. 6 The role of CB2, however, is directly involved with innate immune system, because CB2 is primarily expressed in immune cells, such as macrophages, CD4 ϩ and CD8 ϩ T cells, monocytes, and polymorphonuclear neutro-
It has been previously reported that dietary fish oils, which are rich in the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, can exert beneficial effects in inflammatory bowel disease. In this study, we investigated the effects of docosahexaenoic acid–derived lipid mediator maresin 1 (MaR1) in dextran sulfate sodium (DSS)– and 2,4,6-trinitrobenzenesulfonic acid–induced colitis in mice. Systemic treatment with MaR1 significantly attenuated both DSS- and 2,4,6-trinitrobenzene sulfonic acid–induced colonic inflammation by improving the disease activity index and reducing body weight loss and colonic tissue damage. MaR1 treatment also induced a significant decrease in levels of inflammatory mediators, such as IL-1β, TNF-α, IL-6, and IFN-γ, in the acute protocol, as well as IL-1β and IL-6, but not TNF-α and INF-γ, in the chronic DSS colitis protocol. Additionally, MaR1 decreased ICAM-1 mRNA expression in both the acute and chronic protocols of DSS-induced colitis. Furthermore, the beneficial effects of MaR1 seem to be associated with inhibition of the NF-κB pathway. Moreover, incubation of LPS-stimulated bone marrow–derived macrophage cultures with MaR1 reduced neutrophil migration and reactive oxygen species production, besides decreasing IL-1β, TNF-α, IL-6, and INF-γ production. Interestingly, macrophages incubated only with MaR1 showed a significant upregulation of mannose receptor C, type 1 mRNA expression, an M2 macrophage phenotype marker. These results indicate that MaR1 consistently protects mice against different models of experimental colitis, possibly by inhibiting the NF-κB pathway and consequently multiple inflammatory mediators, as well as by enhancing the macrophage M2 phenotype.
Although neutrophils are strongly implicated in eliminating pathogens, excessive recruitment may cause tissue damage. Therefore, reducing cell influx during an inflammatory process may be a potential target for treating inflammatory bowel diseases (IBD). As CXCR2 is involved in neutrophil migration, this study aimed to evaluate whether the systemic therapeutic treatment with selective CXCR2 antagonist SB225002 ameliorates experimental colitis, which was induced in mice by 2,4,6-trinitrobenzene sulfonic acid (TNBS). After colitis establishment (24 h), mice were treated with SB225002. At later time-points, up to 72 h, mice were monitored for body weight loss and overall mortality. At the time of sacrifice, colonic tissues were scored for macro- and microscopic damage, and cytokine levels, myeloperoxidase (MPO) activity, and protein expression were analyzed. TNBS administration induced macro- and microscopic damage in colon tissue, leading in most cases to animal death. Curative treatment with SB225002 significantly reduced all of the parameters analyzed, leading to an improvement of inflammatory signs. SB225002 reduced neutrophil influx, MPO activity, IL-1beta, MIP-2, and keratinocyte-derived chemokine (KC) levels and the expression of vascular endothelial growth factor, inducible NO synthase, and cyclooxygenase-2 proteins into the colon tissue. Levels of IL-4 and IL-10 were increased significantly in the colons of animals treated with SB225002. Additionally, curative treatment with mouse anti-KC significantly reduced MPO activity and colonic damage. These results taken together demonstrate that a selective blockade of CXCR2 consistently reduced TNBS-induced colitis, suggesting that the use of SB225002 is a potential therapeutic approach for the treatment of IBD and other related inflammatory disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.