Glioblastomas are invasive and aggressive tumors of the brain, generally considered to arise from glial cells.
Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)–mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients.
In this study, approximately 40 endogenous metabolites were identified and quantified by (1)H NMR in urine samples from male rats dosed with two proximal tubule toxicants, cisplatin and gentamicin. The excreted amount of a majority of those metabolites in urine was found to be dose-dependent and exhibited a strong correlation with histopathology scores of overall proximal tubule damage. MetaCore pathway analysis software (GeneGo Inc.) was employed to identify nephrotoxicant-associated biochemical changes via an integrated quantitative analysis of both urine metabolomic and kidney transcriptomic profiles. Correlation analysis was applied to establish quantitative linkages between pairs of individual metabolite and gene transcript profiles in both cisplatin and gentamicin studies. This analysis revealed that cisplatin and gentamicin treatments were strongly linked to declines in mRNA transcripts for several luminal membrane transporters that handle each of the respective elevated urinary metabolites, such as glucose, amino acids, and monocarboxylic acids. The integrated pathway analysis performed on these studies indicates that cisplatin- or gentamicin-induced renal Fanconi-like syndromes manifested by glucosuria, hyperaminoaciduria, lactic aciduria, and ketonuria might be better explained by the reduction of functional proximal tubule transporters rather than by the perturbation of metabolic pathways inside kidney cells. Furthermore, this analysis suggests that renal transcription factors HNF1alpha, HNF1beta, and HIF-1 might be the central mediators of drug-induced kidney injury and adaptive response pathways.
SUMMARYDespite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with elevated expression of receptor tyrosine kinases (RTKs), including EGFR. Notably, RNF125 altered RTK expression through JAK1, which we identified as an RNF125 substrate. RNF125 bound to and ubiquitinated JAK1, prompting its degradation and suppressing RTK expression. Inhibition of JAK1 and EGFR signaling overcame BRAFi resistance in melanoma with reduced RNF125 expression, as shown in culture and in in vivo xenografts. Our findings suggest that combination therapies targeting both JAK1 and EGFR could be effective against BRAFi-resistant tumors with de novo low RNF125 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.