Reinfection of a recovered individual either as a result of relapse or new contact no doubt poses a major threat to the eradication of an infection within the host community. In this work, the role of re-infection in the transmission dynamics of COVID-19 was considered and analysed using the semi-analytical tool Differential Transform Method (DTM). COVID-19 (also known as Coronavirus) has shut down the economy of the world since it became a global pandemic. A mathematical model was constructed with consideration of multiple pathways of infection transmission, the treatment strategies and policies adopted (social distancing, wearing of face mask and so on) to limit the spread of the infection globally. The non-linear system of equations governing the model was solved using DTM and the resulting series solution was compared with the standard numeric Runge-Kutta order 4 (RK4). It was discovered that re-integration of a recovered individual into the susceptible community without observing the prevention guidelines such as social distancing, washing of hands and proper sanitizing could increase the spread of the infection since the recovered individuals are not guaranteed of immunity against the infection after recovery. The study concluded that families of recovered patients must ensure adequate preventive measure while integrating their recovered loved ones back to their midst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.