Shifts in plant functional groups associated with climate change have the potential to influence peatland carbon storage by altering the amount and composition of organic matter available to aquatic microbial biofilms. The goal of this study was to evaluate the potential for plant subsidies to regulate ecosystem carbon flux (CO2) by governing the relative proportion of primary producers (microalgae) and heterotrophic decomposers (heterotrophic bacteria) during aquatic biofilm development in an Alaskan fen. We evaluated biofilm composition and CO2 flux inside mesocosms with and without nutrients (both nitrogen and phosphorus), organic carbon (glucose), and leachates from common peatland plants (moss, sedge, shrub, horsetail). Experimental mesocosms were exposed to either natural sunlight or placed under a dark canopy to evaluate the response of decomposers to nutrients and carbon subsidies with and without algae, respectively. Algae were limited by inorganic nutrients and heterotrophic bacteria were limited by organic carbon. The quality of organic matter varied widely among plants and leachate nutrient content, more so than carbon quality, influenced biofilm composition. By alleviating nutrient limitation of algae, plant leachates shifted the biofilm community toward autotrophy in the light-transparent treatments, resulting in a significant reduction in CO2 emissions compared to the control. Without the counterbalance from algal photosynthesis, a heterotrophic biofilm significantly enhanced CO2 emissions in the presence of plant leachates in the dark. These results show that plants not only promote carbon uptake directly through photosynthesis, but also indirectly through a surrogate, the phototrophic microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.