The upper lip and primary palate form an essential separation between the brain, nasal structures and the oral cavity. Surprisingly little is known about the development of these structures, despite the fact that abnormalities can result in various forms of orofacial clefts. We have uncovered that retinoic acid is a critical regulator of upper lip and primary palate development in Xenopus laevis. Retinoic acid synthesis enzyme, RALDH2, and retinoic acid receptor gamma (RARγ) are expressed in complementary and partially overlapping regions of the orofacial prominences that fate mapping revealed contribute to the upper lip and primary palate. Decreased RALDH2 and RARγ result in a median cleft in the upper lip and primary palate. To further understand how retinoic acid regulates upper lip and palate morphogenesis we searched for genes downregulated in response to RARγ inhibition in orofacial tissue, and uncovered homeobox genes lhx8 and msx2. These genes are both expressed in overlapping domains with RARγ, and together their loss of function also results in a median cleft in the upper lip and primary palate. Inhibition of RARγ and decreased Lhx8/Msx2 function result in decreased cell proliferation and failure of dorsal anterior cartilages to form. These results suggest a model whereby retinoic acid signaling regulates Lhx8 and Msx2, which together direct the tissue growth and differentiation necessary for the upper lip and primary palate morphogenesis. This work has the potential to better understand the complex nature of the upper lip and primary palate development which will lead to important insights into the etiology of human orofacial clefts.
Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects.
Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.
Retinoic acid induced-1 (RAI1) is an important yet understudied histone code reader that when mutated in humans results in Smith-Magenis syndrome (SMS), a neurobehavioral disorder accompanied by signature craniofacial abnormalities. Despite previous studies in mouse and human cell models, very little is known about the function of RAI1 during embryonic development. In the present study, we have turned to the model vertebrates Xenopus laevis and Xenopus tropicalis to better understand the developmental roles of Rai1. First we demonstrate that the Rai1 protein sequence is conserved in frogs, especially in known functional domains. By in situ hybridization we revealed expression of rai1 in the developing craniofacial tissues and the nervous system. Knockdown of Rai1 using antisense morpholinos resulted in defects in the developing brain and face. In particular, Rai1 morphants display midface hypoplasia and malformed mouth shape analogous to defects in humans with SMS. These craniofacial defects were accompanied with aberrant neural crest migration and reduction in the size of facial cartilage elements. Rai1 morphants also had defects in axon patterns and decreased forebrain ventricle size. Such brain defects correlated with a decrease in the neurotrophic factor, bdnf, and increased forebrain apoptosis. Our results emphasize a critical role of Rai1 for normal neural and craniofacial development, and further the current understanding of potential mechanisms that cause SMS.
Xenopus has become a useful tool to study the molecular mechanisms underlying orofacial development. However, few quantitative analyses exist to describe the anatomy of this region. In this study we combine traditional facial measurements with geometric morphometrics to describe anatomical changes in the orofacial region during normal and abnormal development. Facial measurements and principal component (PC) analysis indicate that during early tadpole development the face expands primarily in the midface region accounting for the development of the upper jaw and primary palate. The mouth opening correspondingly becomes flatter and wider as it incorporates the jaw elements. A canonical variate analysis of orofacial and mouth opening shape emphasized that changes in the orofacial shape occur gradually. Orofacial anatomy was quantified after altered levels of retinoic acid using all-trans retinoic acid or an inhibitor of retinoic acid receptors or by injecting antisense oligos targeting RALDH2. Such perturbations resulted in major decreases in the width of the midface and the mouth opening illustrated in facial measurements and a PC analysis. The mouth opening shape also had a gap in the primary palate resulting in a median cleft in the mouth opening that was only illustrated quantitatively in the morphometric analysis. Finally, canonical and discriminant function analysis statistically distinguished the orofacial and mouth opening shape changes among the different modes used to alter retinoic acid signaling levels. By combining quantitative analyses with molecular studies of orofacial development we will be better equipped to understand the complex morphogenetic processes involved in palate development and clefting. Anat Rec, 297:834-855, 2014. V C 2014 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.