The synthesis of dihydroxybenzenes (DHBZ), essential chemical reagents in numerous industrial processes, with a high degree of selectivity and yield from the hydroxylation of phenol is progressively attracting great interest in the catalysis field. Furthermore, the additive manufacturing of catalysts to produce 3D printed monoliths would provide additional benefits to enhance the DHBZ synthesis performance. Herein, 3D cellular Fe/γ-Al 2 O 3 monoliths with a total porosity of 88% and low density (0.43 g• cm −3 ) are printed by Robocasting from pseudoplastic Fe-metalorganic frameworks (Fe-MOF)-based aqueous boehmite inks to develop catalytic monoliths containing a Fe network of dispersed clusters (≤5 μm), nanoclusters (<50 nm), and nanoparticles (∼20 nm) into the porous ceramic skeleton. The hydroxylation of phenol in the presence of hydrogen peroxide is carried out at different reaction temperatures (65−85 °C) in a flow reactor filled with eight stacked 3D Fe/γ-Al 2 O 3 monoliths and with the following operating conditions: C phenol,0 = 0.33 M, C phenol,0 /C H 2 O 2 ,0 = 1:1 molar, W R = 2.2 g, and space time (τ = WThe scaffolds present a good mechanical resistance (∼1 MPa) to be employed in a catalytic reactor and do not show any cracks or damage after the chemical reaction. DHBZ selectivity (S DHBZ ) of 100% with a yield (Y DHBZ ) of 32% due to the presence of the Fe network in the monoliths is reported at 85 °C, which represents an improved synthesis performance as compared to that obtained by using the conventional Enichem process and the well-known titanium silicalite-1 catalysts (S DHBZ = 99.1% and Y DHBZ = 29.6% at 80 °C). This printing strategy allows manufacturing novel 3D structured catalysts for the synthesis of critical chemical compounds with higher reaction efficiencies.
A semi-crystalline iron-based metal-organic framework (MOF), in particular Fe-BTC, that contained 20 wt.% Fe, was sustainably synthesized at room temperature and extensively characterized. Fe-BTC nanopowders could be used as an efficient heterogeneous catalyst for the synthesis of dihydroxybenzenes (DHBZ), from phenol with hydrogen peroxide (H2O2), as oxidant under organic solvent-free conditions. The influence of the reaction temperature, H2O2 concentration and catalyst dose were studied in the hydroxylation performance of phenol and MOF stability. Fe-BTC was active and stable (with negligible Fe leaching) at room conditions. By using intermittent dosing of H2O2, the catalytic performance resulted in a high DHBZ selectivity (65%) and yield (35%), higher than those obtained for other Fe-based MOFs that typically require reaction temperatures above 70 °C. The long-term experiments in a fixed-bed flow reactor demonstrated good Fe-BTC durability at the above conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.