This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA/OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a(-1) (range 34-144 Tg a(-1)) and the median SOA source strength (natural and anthropogenic) is 19 Tg a(-1) (range 13-121 Tg a(-1)). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a(-1) (range 16-121 Tg a(-1)), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a(-1); range 13-20 Tg a(-1), with one model at 37 Tg a(-1)). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a(-1) (range 28-209 Tg a(-1)), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model-observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model-measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA agi...
The Whole Atmosphere Community Climate Model version 6 (WACCM6) is a major update of the whole atmosphere modeling capability in the Community Earth System Model (CESM), featuring enhanced physical, chemical and aerosol parameterizations. This work describes WACCM6 and some of the important features of the model. WACCM6 can reproduce many modes of variability and trends in the middle atmosphere, including the quasi‐biennial oscillation, stratospheric sudden warmings, and the evolution of Southern Hemisphere springtime ozone depletion over the twentieth century. WACCM6 can also reproduce the climate and temperature trends of the 20th century throughout the atmospheric column. The representation of the climate has improved in WACCM6, relative to WACCM4. In addition, there are improvements in high‐latitude climate variability at the surface and sea ice extent in WACCM6 over the lower top version of the model (CAM6) that comes from the extended vertical domain and expanded aerosol chemistry in WACCM6, highlighting the importance of the stratosphere and tropospheric chemistry for high‐latitude climate variability.
Abstract. The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA) and secondary OA (SOA) – observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA) which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes), biogenic (i.e. monoterpenes and isoprene), and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA suggesting a tendency of the model to excessively evaporate the freshly formed SOA. Predicted SOA concentrations in our base case were extremely low when photochemistry was not active, especially overnight, as the SOA formed in the previous day was mostly quickly advected away from the basin. These nighttime discrepancies were not significantly reduced when greatly enhanced partitioning to the aerosol phase was assumed. Model sensitivity results suggest that observed nighttime OOA concentrations are strongly influenced by a regional background SOA (~1.5 μg/m3) of biogenic origin which is transported from the coastal mountain ranges into the Mexico City basin. The presence of biogenic SOA in Mexico City was confirmed by SOA tracer-derived estimates that have reported 1.14 (±0.22) μg/m3 of biogenic SOA at T0, and 1.35 (±0.24) μg/m3 at T1, which are of the same order as the model. Consistent with other recent studies, we find that biogenic SOA does not appear to be underestimated significantly by traditional models, in strong contrast to what is observed for anthropogenic pollution. The relative contribution of biogenic SOA to predicted monthly mean SOA levels (traditional approach) is estimated to be more than 30% within the city and up to 65% at the regional scale which may help explain the significant amount of modern carbon in the aerosols inside the city during low biomass burning periods. The anthropogenic emissions of isoprene and its nighttime oxidation by NO3 were also found to enhance the SOA mean concentrations within the city by an additional 15%. Our results confirm the large underestimation of the SOA production by traditional models in polluted regions (estimated as 10–20 tons within the Mexico City metropolitan area during the daily peak), and emphasize for the first time the role of biogenic precursors in this region, indicating that they cannot be neglected in urban modeling studies.
Abstract. Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA), an atmospheric observatory with these goals in mind. Today SIRTA, located 20 km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSatCorrespondence to: M. Haeffelin (martial.haeffelin@lmd.polytechnique.fr) and CALIPSO). SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.