Probiotics are live microorganisms that confer a number of health benefits when consumed in adequate amounts, mostly due to improvement of intestinal microflora. Bacterial strains from the genera Lactobacillus, Bifidobacterium, and Bacillus have been widely studied and are used to prepare ready-to-eat foods. However, the physicochemical stability and bioavailability of these bacteria have represented a challenge for many years, particularly in nonrefrigerated foodstuffs. Microencapsulation (ME) helps to improve the survival of these bacteria because it protects them from harsh conditions, such as high temperature, pH, or salinity, during the preparation of a final food product and its gastrointestinal passage. The most common coating materials used in the ME of probiotics are ionic polysaccharides, microbial exopolysaccharides, and milk proteins, which exhibit different physicochemical features as well as mucoadhesion. Structurally, the survival of improved bacteria depends on the quantity and strength of the functional groups located in the bacterial cell walls, coating materials, and cross-linkers. However, studies addressing the role of these interacting groups and the resulting metabolic impacts are still scarce. The fate of new probiotic-based products for the 21st century depends on the correct selection of the bacterial strain, coating material, preparation technique, and food vehicle, which are all briefly reviewed in this article.
a b s t r a c tGluten-free pasta represents a challenge for food technologists and nutritionists since gluten-free materials used in conventional formulations have poor functional and nutritional properties. A novel extrusion-cooking process was set up to improve the textural characteristics of rice-based pasta, and to enrich it with amaranth. Mineral and fiber content, and protein digestibility were improved by amaranth enrichment. Extrusion-cooking of a 75/25 mixture of rice flour and amaranth prior to pasta-making gave the best results as for the textural characteristics of the final product. The firmness of cooked pasta increased due to the extrusion-cooking process, that also decreased protein solubility in the amaranthenriched pasta. The content in accessible thiols also decreased in amaranth-enriched pastas, indicating that amaranth proteins may be involved in forming disulphide bonds during the pasta-making process. Our results suggest that starch in rice flour interacts best with amaranth proteins when starch gelatinization occurs simultaneously to protein denaturation in the extrusion-cooking process.
Gluten-free bakery foodstuffs are a challenge for technologists and nutritionists since alternative ingredients used in their formulations have poor functional and nutritional properties. Therefore, gluten-free bread and cookies using raw and popped amaranth, a grain with high quality nutrients and promising functional properties, were formulated looking for the best combinations. The best formulation for bread included 60-70% popped amaranth flour and 30-40% raw amaranth flour which produced loaves with homogeneous crumb and higher specific volume (3.5 ml/g) than with other gluten-free breads. The best cookies recipe had 20% of popped amaranth flour and 13% of whole-grain popped amaranth. The expansion factor was similar to starch-based controls and the hardness was similar (10.88 N) to other gluten-free cookies. Gluten content of the final products was around 12 ppm. The functionality of amaranth-based doughs was acceptable although hydrocolloids were not added and the final gluten-free products had a high nutritional value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.