Coke-based carbon sorbent (CBCS) was produced using special coke fines with the following characteristics: ash, 4.5%; iodine adsorption capacity, 52%; specific surface area, 600 m2 g−1; and total pore volume, 0.4 cm3 g−1. Gold adsorption from real production cyanide solutions in batch and column laboratory experiments was studied. The optimum adsorbent/solution ratio was 0.2 g/20 cm3. Sorption equilibrium occurred after 60 min of phase-time contact. The CBCS maximum adsorption capacity for gold was found to be 1.2 mg g−1. Both the Langmiur and Freundlich isotherm models confirmed that gold adsorption by CBCS proceeds favorably, but the Freundlich isotherm best describes the adsorption equilibrium. The CBCS dynamic exchange capacity (100 g t−1) and full dynamic exchange capacity (4600 g t−1) for gold were determined in column tests. It was revealed using SEM that adsorbate was retained in sorbent pores. The possibility of completely eluting gold from CBCS was demonstrated. A CBCS pilot test to recover gold from 200 dm3 of the cyanide solution containing (mg dm−3) 2.6 Au, 0.42 Ag, and 490 Cu was carried out. The total amount of noble metals (Au + Ag) adsorbed was 99.99% and gold ions was 94%. The CBCS maximum adsorption capacity for gold reached 2900 g t−1.
UDC 669. 054:669.849 Results are provided for thermal and thermogravimetric studies of lead sludge in the presence of and without oxidizing agents in order to determine the thermally active part of the charge composition. It is shown that during oxidation firing of lead sludge the process begins with charge dewatering and organic compound decomposition, and rare metal oxidation commences after complete destruction of organic compounds. Addition of sodium nitrate or calcium hypochlorite oxidizing agents provides complete oxidation of rhenium and osmium in the range of 400-650°C with the subsequent extraction of osmium into sublimate and concentration of rhenium in the form of perrhenate compounds in the ash. In this case decomposition of organic substances proceeds in parallel with oxidation reactions of rare metals without affecting their oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.