vaccines are a critical tool for controlling the ongoing global pandemic. The Food and Drug Administration (FDA) has issued Emergency Use Authorizations for three COVID-19 vaccines for use in the United States.* In large, randomized-controlled trials, each vaccine was found to be safe and efficacious in preventing symptomatic, laboratoryconfirmed . Despite the high level of vaccine efficacy, a small percentage of fully vaccinated persons (i.e. received all recommended doses of an FDA-authorized COVID-19 vaccine) will develop symptomatic or asymptomatic infections with SARS-CoV-2, the virus that causes .CDC is working with state and territorial health departments to investigate SARS-CoV-2 infections among persons who are fully vaccinated and to monitor trends in case characteristics and SARS-CoV-2 variants identified from persons with these infections. For this surveillance, a vaccine breakthrough infection is defined as the detection of SARS-CoV-2 RNA or antigen in a respiratory specimen collected from a person ≥14 days after receipt of all recommended doses of an FDAauthorized COVID-19 vaccine. State health departments voluntarily report vaccine breakthrough infections to CDC. † When possible, genomic sequencing is performed on respiratory specimens that test positive for SARS-CoV-2 RNA (9). A total of 10,262 SARS-CoV-2 vaccine breakthrough infections had been reported from 46 U.S. states and territories as of April 30, 2021. Among these cases, 6,446 (63%) occurred in females, and the median patient age was 58 years (interquartile range = 40-74 years). Based on preliminary data, 2,725 (27%) vaccine breakthrough infections were asymptomatic, 995 (10%) patients were known to be hospitalized, and 160 (2%) patients died. Among the 995 hospitalized patients, 289 (29%) were asymptomatic or hospitalized for a reason unrelated to COVID-19. The median age of patients who died was 82 years (interquartile range = 71-89 years); 28 (18%) decedents were asymptomatic or died from a cause unrelated to COVID-19. Sequence data were available from 555 (5%) reported cases, 356 (64%) of which were identified as SARS-CoV-2 variants of
Noroviruses (NoVs) are the most commonly identified cause of outbreaks and sporadic cases of acute gastroenteritis. We evaluated and optimized NoV-specific TaqMan real-time reverse transcription (RT)-PCR assays for the rapid detection and typing of NoV strains belonging to genogroups GI and GII and adapted them to the LightCycler platform. We expanded the detection ability of the assays by developing an assay that detects the GIV NoV strain. The assays were validated with 92 clinical samples and 33 water samples from confirmed NoV outbreaks and suspected NoV contamination cases. The assays detected NoV RNA in all of the clinical specimens previously confirmed positive by conventional RT-PCR and sequencing. Additionally, the TaqMan assays successfully detected NoV RNA in water samples containing low viral concentrations and inhibitors of RT and/or PCR, whereas the conventional method with region B primers required dilution of the inhibitors. By means of serially diluted NoV T7 RNA transcripts, a potential detection limit of <10 transcript copies per reaction mixture was observed with the GII assay and a potential detection limit of <100 transcript copies per reaction mixture was observed with the GI assay. These results and the ability to detect virus in water that was negative by RT-PCR demonstrate the higher sensitivity of the TaqMan assay compared with that of a conventional RT-PCR assay. The TaqMan methods dramatically decrease the turnaround time by eliminating post-PCR processing. These assays have proven useful in assisting scientists in public health and diagnostic laboratories report findings quickly to outbreak management teams.
The M2 blockers amantadine and rimantadine and the neuraminidase (NA) inhibitors (NAIs) oseltamivir and zanamivir are approved by the FDA for use for the control of influenza A virus infections. The 2009 pandemic influenza A (H1N1) viruses (H1N1pdm) are reassortants that acquired M and NA gene segments from a Eurasian adamantane-resistant swine influenza virus. NAI resistance in the H1N1pdm viruses has been rare, and its occurrence is mainly limited to oseltamivir-exposed patients. The pyrosequencing assay has been proven to be a useful tool in surveillance for drug resistance in seasonal influenza A viruses. We provide a protocol which allows the detection of adamantane resistance markers as well as the I43T change, which is unique to the H1N1pdm M2 protein. The protocol also allows the detection of changes at residues V116, I117, E119, Q136, K150, D151, D199, I223, H275, and N295 in the NA, known to alter NAI drug susceptibility. We report on the detection of the first cases of the oseltamivir resistance-conferring mutation H275Y and the I223V change in viruses from the United States using the approach described in this study. Moreover, the assay permits the quick identification of the major NA group (V106/N248, I106/D248, or I106/N248) to which a pandemic virus belongs. Pyrosequencing is well suited for the detection of drug resistance markers and signature mutations in the M and NA gene segments of the pandemic H1N1 influenza viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.