Occlusal pits and fissures of permanent molars are considered to have higher risk of developing caries. Enamel demineralization can be prevented by applying remineralizing agents, and their absorption increases with prior irradiation. This work evaluates the chemical changes produced by treating occlusal surfaces with sodium fluoride (NaF), hydroxyapatite-NaF-xylitol (HA-NaF-X), Er:YAG laser irradiation (L), and combinations thereof. Fifty enamel samples were randomly assigned to five groups (n = 10): NaF, HA-NaF-X, L, L + NaF, and L + HA-NaF-X. The chemical composition of human enamel was evaluated before (BT) and after (AT) treatment using energy-dispersive X-ray spectroscopy (EDS) and expressed in atomic percentages (at%). For combined treatment groups, the products were applied after laser irradiation. The statistical analyses included a paired t-test and ANOVA (p ≤ 0 05). After treatment, a significant increase in F at% was observed in the NaF group (2.71 ± 1.41). The irradiated groups showed significant increases in Ca and P at% and the Ca/P ratio. The highest values occurred for L + NaF (30.44 ± 4.28 Ca at%, 11.97 ± 1.45 P at%, and 2.55 ± 0.22 Ca/P ratio). Er:YAG laser irradiation alone or in combined protocols increased the Ca and P content of dental enamel, in vitro.
Background. It has been reported that lasers can increase resistance to enamel acids, and when it is associated with fluoride, both are reported to work in synergy, achieving a reduction of the solubility of enamel. Currently, other remineralizing agents have been shown to effectively inhibit enamel demineralization.Objectives. The aim of the study was to evaluate acid resistance in the occlusal surface of permanent teeth, treated with remineralizing agents, erbium-doped yttrium aluminum garnet (Er:YAG) laser and combined treatments.Material and methods. Eighty samples of enamel were randomly assigned to 8 groups (n = 10): a control group, and groups treated with sodium fluoride (NaF), casein phosphopeptide-amorphous calcium phosphate with NaF (CPP-ACPF), hydroxyapatite-NaF-xylitol (HA-NaF-X), Er:YAG laser (L), L+NaF, L+CPP-ACPF, and L+HA-NaF-X. The samples were placed in an acid solution and the released calcium (Ca) was quantified by atomic absorption spectrometry. Results.In the groups treated with NaF and L+NaF, a lower loss of Ca was observed − 15.27 ±5.17 mg/L and 15.20 ±3.85 mg/L, respectively − compared to the control group, which had the highest Ca loss: 21.93 ±13.24 mg/L. Conclusions.Although the combination of Er:YAG laser plus NaF and the single application of NaF showed values suggesting superior resistance to demineralization of dental enamel compared to all the other groups in the study, no statistically significant differences were found to support this assertion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.