In our search for bioactive mushrooms native to British Columbia, we determined that the ethanol extracts from fruiting bodies of the terrestrial polypore Albatrellus flettii had potent anti-cell viability activity. Using bioassay-guided fractionation, mass spectrometry and nuclear magnetic resonance, we successfully isolated three known compounds (grifolin, neogrifolin and confluentin). These compounds represent the major anti-cell viability components from the ethanol extracts of A. flettii. We also identified a novel biological activity for these compounds, specifically in down-regulating KRAS expression in two human colon cancer cell lines. Relatively little is known about the anti-cell viability activity and mechanism of action of confluentin. For the first time, we show the ability of confluentin to induce apoptosis and arrest the cell cycle at the G2/M phase in SW480 human colon cancer cells. The oncogenic insulin-like growth factor 2 mRNA-binding protein 1 (IMP1) has been previously shown to regulate KRAS mRNA expression in colon cancer cells, possibly through its ability to bind to the KRAS transcript. Using a fluorescence polarization assay, we show that confluentin dose-dependently inhibits the physical interaction between KRAS RNA and full-length IMP1. The inhibition also occurs with truncated IMP1 containing the KH1 to KH4 domain (KH1to4 IMP1), but not with the di-domain KH3 and KH4 (KH3&4 IMP1). In addition, unlike the control antibiotic neomycin, grifolin, neogrifolin and confluentin do not bind to KRAS RNA. These results suggest that confluentin inhibits IMP1-KRAS RNA interaction by binding to the KH1&2 di-domains of IMP1. Since the molecular interaction between IMP1 and its target RNAs is a prerequisite for the oncogenic function of IMP1, confluentin should be further explored as a potential inhibitor of IMP1 in vivo.
The aim of this study was to investigate the anti-inflammatory activity of a previously un-studied wild mushroom, Echinodontium tinctorium, collected from the forests of north-central British Columbia. The lipopolysaccharide (LPS)-induced RAW264.7 macrophage model was used to study the in vitro anti-inflammatory activity. The crude alkaline extract demonstrated potent anti-inflammatory activity, and was further purified using a “bio-activity-guided-purification” approach. The size-exclusion and ion-exchange chromatography yielded a water-soluble anti-inflammatory polysaccharide (AIPetinc). AIPetinc has an average molecular weight of 5 kDa, and is a heteroglucan composed of mainly glucose (88.6%) with a small amount of galactose (4.0%), mannose (4.4%), fucose (0.7%), and xylose (2.3%). In in vivo settings, AIPetinc restored the histamine-induced inflammatory event in mouse gluteus maximus muscle, thus confirming its anti-inflammatory activity in an animal model. This study constitutes the first report on the bioactivity of Echinodontium tinctorium, and highlights the potential medicinal benefits of fungi from the wild forests of northern British Columbia. Furthermore, it also reiterates the need to explore natural resources for alternative treatment to modern world diseases.
The first part of this thesis investigated the growth-inhibitory and immunomodulatory potential of six wild Canadian mushrooms. Out of 24 crude extracts, six showed strong growthinhibitory activity, two exhibited strong immuno-stimulatory activity and nine demonstrated potent anti-inflammatory activity. The second part of this thesis involved purification and characterization of growthinhibitory compounds from Albatrellus flettii. Liquid-liquid extraction, Sephadex LH-20 and HPLC-Mass Spectrometry (HPLC-MS) were used to purify the three compounds of interest. NMR analyses confirmed their identity as grifolin, neogrifolin and confluentin. Grifolin and neogrifolin inhibited IMP1-KRas RNA interaction as demonstrated using an in-vitro fluorescent polarization assay. The three compounds suppressed KRas expression in SW480 and HT-29 human colon cancer cells. Confluentin, shown for the first time, to induce apoptosis and arrest cell cycle in SW480 cells. The third part of this thesis involved the development of methods to purify growth-inhibitory compounds from Sarcodon scabripes. HPLC-MS detected some potential novel compounds.
The ethanol extract of the fungus Sarcodon scabripes collected from north-central British Columbia, Canada, showed strong antiproliferative activity. Bioassay-guided purification using liquid-liquid extraction and Sephadex LH-20 size-exclusion chromatography followed by HPLC-MS and 1D/2D NMR analyses, led to the isolation of five known compounds; four p-terphenyl (1-4) derivatives and one phenolic aldehyde (5).Compounds 1, 4, and 5 were isolated for the first time from the Sarcodon genus. The cytotoxicity MTT assay showed that compounds 1-5 have antiproliferative activity against human cervical cancer cells (HeLa). For compounds 1-4, this is the first report of their antiproliferative activity against cancer cells. For compound 2, this is the first report on its bioactivity. To our knowledge, this is the first description on the isolation of bioactive constituents from S. scabripes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.