At least a combination of endoglucanase (EglII) and β-glucosidase (BglZ) is required for hydrolyzing crystalline cellulose. To understand the catalytic efficiency of combination enzymes for converting biomass to sugars, EglII and BglZ were constructed in the form of individual, fused as well as co-expression proteins, and their activities for hydrolyzing sugarcane bagasse were evaluated. The genes, eglII isolated from Bacillus amyloliquefaciens PSM3.1 earlier and bglZ from B. amyloliquefaciens ABBD, were expressed extracellularly in Bacillus megaterium MS941. EglII exhibited both exoglucanase and endoglucanase activities, and BglZ belonging to the glycoside hydrolase 1 family (GH 1) showed β-glucosidase activity. A combination of EglII and BglZ showed activity on substrates Avicel, CMC and sugarcane bagasse. Specifically for hydrolyzing sugarcane bagasse, fused protein (fus-EglII+BglZ), co-expression protein (coex-BglZ+EglII), and mixed-individual protein (mix-EglII+BglZ) produced cellobiose as the main product, along with a small amount of glucose. The amount of reducing sugars released from the hydrolyzing bleached sugarcane bagasse (BSB) using fus-EglII+BglZ and mix-EglII+BglZ was 2.7- and 4.2-fold higher, respectively, than steamed sugarcane bagasse (SSB), indicating the synergetic enzymes worked better on treated sugarcane bagasse. Compared with fus-EglII+BglZ and mix-EglII+BglZ, coex-BglZ+EglII released more mol reducing sugars from SSB, indicating the enzymes were potential for biomass conversion. Additionally, coex-BglZ+EglII acted on BSB 2.5-fold faster than fus-EglII+BglZ. Thus, coex-bglZ+eglII expression system was the best choice to produce enzymes for hydrolyzing sugarcane baggase.
Horseradish peroxidase (HRP) isoenzyme C1a is one of the most widely used enzymes for various analytical methods in bioscience research and medical fields. In these fields, real-time monitoring of HRP activity is highly desirable because the utility of HRP as a reporter enzyme would be expanded. In this study, we developed a simple assay system enabling real-time monitoring of HRP activity by using biolayer interferometry (BLI). The HRP activity was quantitatively detected on a BLI sensor chip by tracing a binding response of tyramide, a substrate of HRP, onto an immobilized protein. This system could be applied to analyses related to oxidase activity, as well as to the functional analysis of recombinant HRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.