This paper presents a generalization of non-uniform B-spline surfaces called T-splines. T-spline control grids permit T-junctions, so lines of control points need not traverse the entire control grid. T-splines support many valuable operations within a consistent framework, such as local refinement, and the merging of several B-spline surfaces that have different knot vectors into a single gap-free model. The paper focuses on T-splines of degree three, which are C 2 (in the absence of multiple knots). T-NURCCs (Non-Uniform Rational Catmull-Clark Surfaces with T-junctions) are a superset of both T-splines and Catmull-Clark surfaces. Thus, a modeling program for T-NURCCs can handle any NURBS or Catmull-Clark model as special cases. T-NURCCs enable true local refinement of a Catmull-Clark-type control grid: individual control points can be inserted only where they are needed to provide additional control, or to create a smoother tessellation, and such insertions do not alter the limit surface. T-NURCCs use stationary refinement rules and are C 2 except at extraordinary points and features.
This paper presents a generalization of non-uniform B-spline surfaces called T-splines. T-spline control grids permit Tjunctions, so lines of control points need not traverse the entire control grid. T-splines support many valuable operations within a consistent framework, such as local refinement, and the merging of several B-spline surfaces that have different knot vectors into a single gap-free model. The paper focuses on T-splines of degree three, which are C 2 (in the absence of multiple knots). T-NURCCs (Non-Uniform Rational Catmull-Clark Surfaces with T-junctions) are a superset of both T-splines and Catmull-Clark surfaces. Thus, a modeling program for T-NURCCs can handle any NURBS or Catmull-Clark model as special cases. T-NURCCs enable true local refinement of a Catmull-Clark-type control grid: individual control points can be inserted only where they are needed to provide additional control, or to create a smoother tessellation, and such insertions do not alter the limit surface. T-NURCCs use stationary refinement rules and are C 2 except at extraordinary points and features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.