Peroxisome proliferator-activated receptor γ (PPARγ) is constitutively expressed at high levels in healthy alveolar macrophages, in contrast to other tissue macrophages and blood monocytes. PPARγ ligands have been shown to down-regulate IFN-γ-stimulated inducible NO synthase (iNOS) in macrophages. Because NO is an important inflammatory mediator in the lung, we hypothesized that deletion of alveolar macrophage PPARγ in vivo would result in up-regulation of iNOS and other inflammatory mediators. The loss of PPARγ in macrophages was achieved by crossing floxed (+/+) PPARγ mice and a transgenic mouse containing the CRE recombinase gene under the control of the murine M lysozyme promoter (PPARγKO). Alveolar macrophages were harvested by bronchoalveolar lavage (BAL). Lymphocytes (CD8:CD4 ratio = 2.8) were increased in BAL of PPARγKO vs wild-type C57BL6; p ≤ 0.0001. Both iNOS and IFN-γ expression were significantly elevated (p ≤ 0.05) in BAL cells. Th-1 associated cytokines including IL-12 (p40), MIP-1α (CCL3), and IFN inducible protein-10 (IP-10, CXCL10) were also elevated. IL-4 and IL-17A were not detected. To test whether these alterations were due to the lack of PPARγ, PPARγ KO mice were intratracheally inoculated with a PPARγ lentivirus construct. PPARγ transduction resulted in significantly decreased iNOS and IFN-γ mRNA expression, as well as reduced BAL lymphocytes. These results suggest that lack of PPARγ in alveolar macrophages disrupts lung homeostasis and results in a Th1-like inflammatory response.
BackgroundAristaless-related homeobox (ARX) is a paired-like homeodomain transcription factor that functions primarily as a transcriptional repressor and has been implicated in neocortical interneuron specification and migration. Given the role interneurons appear to play in numerous human conditions including those associated with ARX mutations, it is essential to understand the consequences of mutations in this gene on neocortical interneurons. Previous studies have examined the effect of germline loss of Arx, or targeted mutations in Arx, on interneuron development. We now present the effect of conditional loss of Arx on interneuron development.ResultsTo further elucidate the role of Arx in forebrain development we performed a series of anatomical and developmental studies to determine the effect of conditional loss of Arx specifically from developing interneurons in the neocortex and hippocampus. Analysis and cell counts were performed from mouse brains using immunohistochemical and in situ hybridization assays at 4 times points across development. Our data indicate that early in development, instead of a loss of ventral precursors, there is a shift of these precursors to more ventral locations, a deficit that persists in the adult nervous system. The result of this developmental shift is a reduced number of interneurons (all subtypes) at early postnatal and later time periods. In addition, we find that X inactivation is stochastic, and occurs at the level of the neural progenitors.ConclusionThese data provide further support that the role of Arx in interneuron development is to direct appropriate migration of ventral neuronal precursors into the dorsal cortex and that the loss of Arx results in a failure of interneurons to reach the cortex and thus a deficiency in interneurons.
-Pulmonary alveolar proteinosis (PAP) is a lung disease characterized by a deficiency of functional granulocyte macrophage colony-stimulating factor (GM-CSF) resulting in surfactant accumulation and lipidengorged alveolar macrophages. GM-CSF is a positive regulator of PPAR␥ that is constitutively expressed in healthy alveolar macrophages. We previously reported decreased PPAR␥ and ATP-binding cassette transporter G1 (ABCG1) levels in alveolar macrophages from PAP patients and GM-CSF knockout (KO) mice, suggesting PPAR␥ and ABCG1 involvement in surfactant catabolism. Because ABCG1 represents a PPAR␥ target, we hypothesized that PPAR␥ restoration would increase ABCG1 and reduce macrophage lipid accumulation. Upregulation of PPAR␥ was achieved using a lentivirus expression system in vivo. GM-CSF KO mice received intratracheal instillation of lentivirus (lenti)-PPAR␥ or control lenti-eGFP. Ten days postinstillation, 79% of harvested alveolar macrophages expressed eGFP, demonstrating transduction. Alveolar macrophages showed increased PPAR␥ and ABCG1 expression after lenti-PPAR␥ instillation, whereas PPAR␥ and ABCG1 levels remained unchanged in lentieGFP controls. Alveolar macrophages from lenti-PPAR␥-treated mice also exhibited reduced intracellular phospholipids and increased cholesterol efflux to HDL, an ABCG1-mediated pathway. In vivo instillation of lenti-PPAR␥ results in: 1) upregulating ABCG1 and PPAR␥ expression of GM-CSF KO alveolar macrophages, 2) reducing intracellular lipid accumulation, and 3) increasing cholesterol efflux activity.
Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.