We study the propagation of probe scalar fields in the background of 4D Einstein–Gauss–Bonnet black holes with anti-de Sitter (AdS) asymptotics and calculate the quasinormal modes. Mainly, we show that the quasinormal spectrum consists of two different branches, a branch perturbative in the Gauss–Bonnet coupling constant $$\alpha $$α and another branch, nonperturbative in $$\alpha $$α. The perturbative branch consists of complex quasinormal frequencies that approximate the quasinormal frequencies of the Schwarzschild AdS black hole in the limit of a null coupling constant. On the other hand, the nonperturbative branch consists of purely imaginary frequencies and is characterized by the growth of the imaginary part when $$\alpha $$α decreases, diverging in the limit of null coupling constant; therefore they do not exist for the Schwarzschild AdS black hole. Also, we find that the imaginary part of the quasinormal frequencies is always negative for both branches; therefore, the propagation of scalar fields is stable in this background.
Recently an anomalous decay rate of the quasinormal modes of a massive scalar field in Schwarzschild black holes backgrounds was reported in which the longest-lived modes are the ones with higher angular number, for a scalar field mass smaller than a critical value, while that beyond this value the behaviour is inverted. In this work, we extend the study to other asymptotic geometries, such as, Schwarzschild-de Sitter and Schwarzschild-AdS black holes. Mainly, we found that such behaviour and the critical mass are present in the Schwarzschild-de Sitter background. Also, we found that the value of the critical mass increases when the cosmological constant increases and also when the overtone number is increasing. On the other hand, despite the critical mass is not present in Schwarzschild-AdS black holes backgrounds, the decay rate of the quasinormal modes always exhibits an anomalous behaviour.
We study the propagation of scalar fields in the background of an asymptotically de Sitter black hole solution in f(R) gravity. The aim of this work is to analyze in modified theories of gravity the existence of an anomalous decay rate of the quasinormal modes (QNMs) of a massive scalar field which was recently reported in Schwarzschild black hole backgrounds, in which the longest-lived modes are the ones with higher angular number, for a scalar field mass smaller than a critical value, while that beyond this value the behavior is inverted. We study the QNMs for various overtone numbers and they depend on a parameter $$\beta $$
β
which appears in the metric and characterizes the f(R) gravity. For small $$\beta $$
β
, i.e. small deviations from the Schwarzschild–dS black hole the anomalous behavior in the QNMs is present for the photon sphere modes, and the critical value of the mass of the scalar field depends on the parameter $$\beta $$
β
while for large $$\beta $$
β
, i.e. large deviations, the anomalous behavior and the critical mass does not appear. Also, the critical mass of the scalar field increases when the overtone number increases until the f(R) gravity parameter $$\beta $$
β
approaches the near extremal limit at which the critical mass of the scalar field does not depend anymore on the overtone number. The imaginary part of the quasinormal frequencies is always negative leading to a stable propagation of the scalar fields in this background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.