Large document collections can be partitioned into topical shards to facilitate distributed search [19]. In a low-resource search environment only a few of the shards can be searched in parallel. Such a search environment faces two intertwined challenges. First, determining which shards to consult for a given query: shard ranking. Second, how many shards to consult from the ranking: cutoff estimation. In this paper we present a family of three algorithms that address both of these problems. As a basis we employ a commonly used data structure, the central sample index (CSI) [29], to represent the shard contents. Running a query against the CSI yields a flat document ranking that each of our algorithms transforms into a tree structure. A bottom up traversal of the tree is used to infer a ranking of shards and also to estimate a stopping point in this ranking that yields cost-effective selective distributed search. As compared to a state-of-theart shard ranking approach the proposed algorithms provide substantially higher search efficiency while providing comparable search effectiveness.
Web-based discussion fora proliferate on the Internet. These fora consist of threads about specific matters. Existing forum search facilities provide an easy way for finding threads of interest. However, understanding the content of threads is not always trivial. This problem becomes more pressing as threads become longer. It frustrates users that are looking for specific information and also makes it more difficult to make valuable contributions to a discussion. We postulate that having a concise summary of a thread would greatly help forum users. But, how would we best create such summaries? In this paper, we present an automated method of summarising threads in discussion fora. Compared with summarisation of unstructured texts and spoken dialogues, the structural characteristics of threads give important advantages. We studied how to best exploit these characteristics. Messages in threads contain both explicit and implicit references to each other and are structured. Therefore, we term the threads hierarchical dialogues. Our proposed summarisation algorithm produces one summary of an hierarchical dialogue by ‘cherry-picking’ sentences out of the original messages that make up a thread. We try to select sentences usable for obtaining an overview of the discussion. Our method is built around a set of heuristics based on observations of real fora discussions. The data used for this research was in Dutch, but the developed method equally applies to other languages. We evaluated our approach using a prototype. Users judged our summariser as very useful, half of them indicating they would use it regularly or always when visiting fora.
Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these has seen widespread realworld adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralized solutions. In this article we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralized client-server solutions in terms of scalability, performance, user satisfaction, and freedom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.