IL-13 and IL-4 are potent mediators of type 2–associated inflammation such as those found in atopic dermatitis (AD). IL-4 shares overlapping biological functions with IL-13, a finding that is mainly explained by their ability to signal via the type 2 IL-4 receptor (R), which is composed of IL-4Rα in association with IL-13Rα1. Nonetheless, the role of the type 2 IL-4R in AD remains to be clearly defined. Induction of two distinct models of experimental AD in Il13ra1−/− mice, which lack the type 2 IL-4R, revealed that dermatitis, including ear and epidermal thickening, was dependent on type 2 IL-4R signaling. Expression of TNF-α was dependent on the type 2 IL-4R, whereas induction of IL-4, IgE, CCL24, and skin eosinophilia was dependent on the type 1 IL-4R. Neutralization of IL-4, IL-13, and TNF-α as well as studies in bone marrow–chimeric mice revealed that dermatitis, TNF-α, CXCL1, and CCL11 expression were exclusively mediated by IL-13 signaling via the type 2 IL-4R expressed by nonhematopoietic cells. Conversely, induction of IL-4, CCL24, and eosinophilia was dependent on IL-4 signaling via the type 1 IL-4R expressed by hematopoietic cells. Last, we pharmacologically targeted IL-13Rα1 and established a proof of concept for therapeutic targeting of this pathway in AD. Our data provide mechanistic insight into the differential roles of IL-4, IL-13, and their receptor components in allergic skin and highlight type 2 IL-4R as a potential therapeutic target in AD and other allergic diseases such as asthma and eosinophilic esophagitis.
Inflammation triggered by interleukin-4 (IL-4)/IL-13 is mediated by IL-4 and IL-13 receptors that are present on multiple cell types, including epithelial cells, smooth muscle, fibroblasts endothelial cells and immune cells. IL-4 exerts its activities by interacting with two specific cell surface receptors: one designated the type 1 IL-4 receptor (IL-4R); the other designated the type 2 IL-4R, a receptor complex that is also the functional receptor for IL-13. "Traditionally," IL-4 and IL-13 have been studied in the context of T helper 2-associated immune responses (i.e., type 2 immunity). In these settings, IL-4, IL-13 and their cognate receptor chains display pivotal roles where IL-4 is considered an instigator of type 2 immune responses and IL-13 an effector molecule. Thus, therapeutic targeting of the IL-4/IL-13 pathway is under extensive research, mainly for the treatment of allergic diseases. Nonetheless, in addition to IL-4's and IL-13's roles in type 2 immune responses, recent data highlight key activities for IL-4 and IL-13 in additional settings including metabolism, bone resorption, and even cognitive learning. This review summarizes the established knowledge that has accumulated regarding the roles of IL-4, IL-13, and their receptors in allergic diseases, with an emphasis on asthma, atopic dermatitis and eosinophilic esophagitis. Further, we provide an overview of the pharmacological entities targeting these cytokines and/or their receptors, which have been developed and clinically examined over the years. Finally, we will briefly highlight emerging evidence of potential new roles for IL-4 and IL-13 in other pathologies.
Antiphospholipid syndrome (APS) affects coagulation and the brain by autoimmune mechanisms. The major antigen in APS is beta-2-glycoprotein I (β2-GPI) is known to complex with annexin A2 (ANXA2), and antibodies to ANXA2 have been described in APS. We measured these antibodies in mice with experimental APS (eAPS) induced by immunization with β2-GPI. Sera of these mice reacted significantly with recombinant ANXA2 by enzyme-linked immunosorbent assay (ELISA) and the eAPS mice had significantly high levels of immunoglobulin G (IgG) in the brain by immunoblot assays compared to adjuvant immunized controls. Immunoprecipitation performed by mixing eAPS brain tissue with protein-G beads resulted in identification of two autoantigens unique to the eAPS group, one of which was ANXA2. In order to study more directly and methodically the specific role of anti-ANXA2 antibodies in APS, we immunized mice with β2-GPI which contained no ANXA2 or with ANXA2 and measured antibodies to these proteins. Levels of antibodies to ANXA2 measured by ELISA were 0.72 ± 0.007 arbitrary units (a.u), 0.24 ± 0.03 and 0.02 ± 0.01 a.u for sera from ANXA2, β2-GPI and control mice, respectively (p < 0.0001 and p = 0.037 for the comparison of the ANXA2 and β2-GPI groups to the controls). Purified IgG from β2-GPI sera did not show cross-binding with ANXA2. Antibodies to β2-GPI and phospholipids were found in the β2-GPI immunized group only. The present study suggests an immune response to the β2-GPI-ANXA2 complex in eAPS and provides a novel ANXA2 immunization model which will serve to study the role of ANXA2 antibodies in of APS.
Background Eosinophilic esophagitis (EoE) is a chronic, food‐driven allergic disease, characterized by eosinophil‐rich inflammation in the esophagus. The histopathological and clinical features of EoE have been attributed to overproduction of the type 2 cytokines IL‐4 and IL‐13, which mediate profound alterations in the esophageal epithelium and neutralizing of their shared receptor component (IL‐4Rα) with a human antibody drug (dupilumab) demonstrates clinical efficacy. Yet, the relative contribution of IL‐4 and IL‐13 and whether the type II IL‐4 receptor (comprised of the IL‐4Rα chain in association with IL‐13Rα1) mediates this effect has not been determined. Methods Experimental EoE was induced in WT, Il13ra1−/−, and Krt14Cre/Il13ra1fl/fl mice by skin‐sensitized using 4‐ethoxymethylene‐2‐phenyl‐2‐oxazolin (OXA) followed by intraesophageal challenges. Esophageal histopathology was determined histologically. RNA was extracted and sequenced for transcriptome analysis and compared with human EoE RNAseq data. Results Induction of experimental EoE in mice lacking Il13ra1 and in vivo IL‐13 antibody‐based neutralization experiments blocked antigen‐induced esophageal epithelial and lamina propria thickening, basal cell proliferation, eosinophilia, and tissue remodeling. In vivo targeted deletion of Il13ra1 in esophageal epithelial cells rendered mice protected from experimental EoE. Single‐cell RNA sequencing analysis of human EoE biopsies revealed predominant expression of IL‐13Rα1 in epithelial cells and that EoE signature genes correlated with IL‐13 expression compared with IL‐4. Conclusions We demonstrate a definitive role for IL‐13 signaling via IL‐13Rα1 in EoE. These data provide mechanistic insights into the mode of action of current therapies in EoE and highlight the type II IL‐4R as a future therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.