Nowadays there is an increasing demand to provide a real-time environmental information. So, the growing number of mobile devices carried by users establish a new and fastgrowing sensing paradigm to satisfy this need, which is called Mobile Crowd Sensing (MCS). The MCS uses different sensing abilities to acquire local knowledge through enhanced mobile devices. In MCS, it is very important to collect high-quality sensory data that satisfies the needs of all assigned tasks and the task organizers with a minimum cost for the participants. One of the most important factors which affect the MCS cost is how to schedule different sensing tasks which must be assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring high-quality sensory data. In this paper, the problem of scheduling the tasks which have mutual sensor is formulated and a scheduling method to minimize the energy consumption by reducing the sensor utilization is proposed. The proposed method will incentive the users to participate in multiple tasks at the same time, which minimizes the total cost of the performed tasks and increases his rewards. The experimental results by using synthetic and real data show that the proposed scheduling method can minimize the energy consumption and preserve the task requirements compared to existing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.