We continue the study of the concepts of minimality and homogeneity in the fuzzy context. Concretely, we introduce two new notions of minimality in fuzzy bitopological spaces which are called minimal fuzzy open set and pairwise minimal fuzzy open set. Several relationships between such notions and a known one are given. Also, we provide results about the transformation of minimal, and pairwise minimal fuzzy open sets of a fuzzy bitopological space, via fuzzy continuous and fuzzy open mappings, and pairwise continuous and pairwise open mappings, respectively. Moreover, we present two new notions of homogeneity in the fuzzy framework. We introduce the notions of homogeneous and pairwise homogeneous fuzzy bitopological spaces. Several relationships between such notions and a known one are given. And, some connections between minimality and homogeneity are given. Finally, we show that cut bitopological spaces of a homogeneous (resp. pairwise homogeneous) fuzzy bitopological space are homogeneous (resp. pairwise homogeneous) but not conversely.
<p>Let G = (V (G), E(G)) be a graph, define an edge labeling function ψ from E(G) to {0, 1, . . . , k − 1} where k is an integer, 2 ≤ k ≤ |E(G)|, induces a vertex labeling function ψ∗ from V (G) to {0, 1, . . . , k − 1} such that ψ∗(v) = ψ(e1) × ψ(e2) × . . . × ψ(en) mod k where e1, e2, . . . , en are all edge incident to v. This function ψ is called a k-total edge product cordial (or simply k-TEPC) labeling of G if the absolute difference between number of vertices and edges labeling with i and number of vertices and edges labeling with j no more than 1 for all i, j ∈ {0, 1, . . . , k − 1}. In this paper, 4-total edge product cordial labeling for some star related graphs are determined.</p>
Fuzzy n-s-homogeneity and fuzzy weak n-s-homogeneity are introduced in fuzzy bitopological spaces. Several relationships, characterizations and examples related to them are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.