In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R
2 data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
Electromagnetic methods have been widely used in the measurement of the water content of the soil. These methods utilize the permittivity as electrical properties of the soil, to determine the moisture content of the soil. Since the measurements are carried out indirectly, a calibration between permittivity and the water content of the soil is needed. Generally, the calibration method is generated by using an empirical and mixing model. This study presents a proposed model of calibration by using a normalization approach to calibrate the value of the permittivity of the water content of the soil. Then the model was applied using electrical capacitance volume tomography (ECVT) to image soil water content during infiltration of water in a soil column. Granular and silty sand were used as soil material in the experiments. The result showed that the model for measuring moisture water content can be seen in each layer during soil water infiltration in the soil column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.