This study describes a new global non-hydrostatic dynamical core (ICON-IAP:Icosahedral Nonhydrostatic model at the Institute for Atmospheric Physics) on a hexagonal C-grid which is designed to conserve mass and energy. Energy conservation is achieved by discretizing the antisymmetric Poisson bracket which mimics correct energy conversions between the different kinds of energy (kinetic, potential, internal). Because of the bracket structure this is even possible in a complicated numerical environment with (i) the occurrence of terrain-following coordinates with all the metric terms in it, (ii) the horizontal C-grid staggering on the Voronoi mesh and the complications induced by the need for an acceptable stationary geostrophic mode, and (iii) the necessity for avoiding Hollingsworth instability. The model is equipped with a Smagorinsky-type nonlinear horizontal diffusion. The associated dissipative heating is accounted for by the application of the discrete product rule for derivatives. The time integration scheme is explicit in the horizontal and implicit in the vertical. In order to ensure energy conservation, the Exner pressure has to be offcentred in the vertical velocity equation and extrapolated in the horizontal velocity equation.Test simulations are performed for small-scale and global-scale flows. A test simulation of linear non-hydrostatic flow over a rough mountain range shows the theoretically expected gravity wave propagation. The baroclinic wave test is extended to 40 days in order to check the Lorenz energy cycle. The model exhibits excellent energy conservation properties even in this strongly nonlinear and dissipative case. The Held-Suarez test confirms the reliability of the model over even longer timescales.
Higher-order finite-volume flux operators for transport algorithms used within Runge-Kutta time integration schemes on irregular Voronoi (hexagonal) meshes are proposed and tested. These operators are generalizations of third-and fourth-order operators currently used in atmospheric models employing regular, orthogonal rectangular meshes. Two-dimensional least squares fit polynomials are used to evaluate the higher-order spatial derivatives needed to cancel the leading-order truncation error terms of the standard second-order centered formulation. Positive definite or monotonic behavior is achieved by applying an appropriate limiter during the final Runge-Kutta stage within a given time step.The third-and fourth-order formulations are evaluated using standard transport tests on the sphere. The new schemes are more accurate and significantly more efficient than the standard second-order scheme and other schemes in the literature examined by the authors. The third-order formulation is equivalent to the fourth-order formulation plus an additional diffusion term that is proportional to the Courant number. An optimal value for the coefficient scaling this diffusion term is chosen based on qualitative evaluation of the test results. Improvements using the higher-order scheme in place of the traditional second-order centered approach are illustrated within 3D unstable baroclinic wave simulations produced using two global nonhydrostatic models employing spherical Voronoi meshes.
A set of compressible non-hydrostatic equations for a turbulence-averaged model atmosphere comprising dry air and water in three phases plus precipitating fluxes is presented, in which common approximations are introduced in such a way that no inconsistencies occur in the associated budget equations for energy, mass and Ertel's potential vorticity. These conservation properties are a prerequisite for any climate simulation or NWP model.It is shown that a Poisson bracket form for the ideal fluid part of the full-physics equation set can be found, while turbulent friction and diabatic heating are added as separate 'dissipative' terms. This Poisson bracket is represented as a sum of a two-fold antisymmetric triple bracket (a Nambu bracket represented as helicity bracket) plus two antisymmetric brackets (so-called mass and thermodynamic brackets of the Poisson type).The advantage of this approach is that the given conservation properties and the structure of the brackets provide a good strategy for the construction of their discrete analogues. It is shown how discrete brackets are constructed to retain their antisymmetric properties throughout the spatial discretisation process, and a method is demonstrated how the time scheme can also be incorporated in this philosophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.