We report pH/bacteria-responsive nanocomposite coatings with multiple mechanisms of antibacterial protection that include the permanent retention of antimicrobials, bacteria-triggered release of antibiotics and bacteria-induced film swelling. A novel small-molecule-hosting film was constructed using layer-by-layer deposition of montmorillonite (MMT) clay nanoplatelets and polyacrylic acid (PAA) components, both of which carry a negative charge at neutral pH. The films were highly swollen in water, and they exhibited major changes in swelling as a function of pH. Under physiologic conditions (pH 7.5, 0.2 M NaCl), hydrogel-like MMT/PAA films took up and sequestered B45% of the dry film matrix mass of the antibiotic gentamicin, causing dramatic film deswelling. Gentamicin remained sequestrated within the films for months under physiologic conditions and therefore did not contribute to the development of antibiotic resistance. When challenged with bacteria (Staphylococcus aureus, Staphylococcus epidermidis or Escherichia coli), the coatings released PAA-bound gentamicin because of bacteria-induced acidification of the immediate environment, whereas gentamicin adsorbed to MMT nanoplatelets remained bound within the coating, affording sustained antibacterial protection. Moreover, an increase in film swelling after gentamicin release further hindered bacterial adhesion. These multiple bacteria-triggered responses, together with nontoxicity to tissue cells, make these coatings promising candidates for protecting biomaterial implants and devices against bacterial colonization. INTRODUCTIONPolymer nanocomposites uniquely combine the properties of inorganic and organic components that is central to the development of novel advanced materials. The naturally occurring smectite clays, which are chemically and thermally stable and biocompatible, are attractive nanocomposites. Exfoliated clay nanoplatelets strongly impact the mechanical, transport, optical, fire retardant and gas barrier properties of nanocomposite materials. 1,2 For many biomedical applications, however, hydrophilic rather than hydrophobic nanocomposites are of great interest, and responsive properties are essential. 3 Reports on responsive hydrophilic nanocomposites are rare, and those few known to us advantageously use the complementary properties of temperature/pH-responsive polymers and clay nanosheets to yield environmentally controlled free-standing materials. 4 A promising way to leverage the favorable properties of hydrophilic-responsive nanocomposites on surfaces is to use the layer-by-layer (LbL) technique to construct 'smart' surface coatings. 5 To construct clay-containing LbL films, electrostatic interactions of positively charged polymers with negatively charged basal planes of silicate nanosheets, 6,7 neutral polymer/nanoplatelet hydrogen bonding 8 or a combination of the two have been explored. 9
We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical crosslinking with glutaraldehyde and pH triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥ 98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.