We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor
electroencephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine
whether the ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented
system is able to automatically reduce electrooculogram (EOG) artifacts, to detect electromyographic (EMG) activity, and uses
only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE) and the Brainloop
interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and
collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments
and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The
Brainloop interface provides an interface between the Graz-BCI and Google Earth.
Processing and storage of sensory information is based on the interaction between different neural populations rather than the isolated activity of single neurons. In order to characterize the dynamic interaction and transient cooperation of sub-circuits within a neural network, multivariate autoregressive (MVAR) models have proven to be an important analysis tool. In this study, we apply directed functional coupling based on MVAR models and describe the temporal and spatial changes of functional coupling between simultaneously recorded local field potentials in extrastriate area V4 during visual memory. Specifically, we compare the strength and directional relations of coupling based on generalized partial directed coherence (GPDC) measures while two rhesus monkeys perform a visual short-term memory task. In both monkeys we find increases in theta power during the memory period that are accompanied by changes in directed coupling. These interactions are most prominent in the low frequency range encompassing the theta band (3–12 Hz) and, more importantly, are asymmetric between pairs of recording sites. Furthermore, we find that the degree of interaction decreases as a function of distance between electrode positions, suggesting that these interactions are a predominantly local phenomenon. Taken together, our results show that directed coupling measures based on MVAR models are able to provide important insights into the spatial and temporal formation of local functionally coupled ensembles during visual memory in V4. Moreover, our findings suggest that visual memory is accompanied not only by a temporary increase of oscillatory activity in the theta band, but by a direction-dependent change in theta coupling, which ultimately represents a change in functional connectivity within the neural circuit.
Objective:
The aim is to compare various fully automated methods for reducing ocular artifacts from EEG recordings.
Methods:
Seven automated methods including regression, six component-based methods for reducing ocular artifacts have been applied to 36 data sets from two different labs. The influence of various noise sources is analyzed and the ratio between corrected and uncorrected EEG spectra, has been used to quantify the distortion. Results: The results show that not only regression but also component-based methods are vulnerable to over- or under-compensation and can cause significant distortion of EEG. Despite common belief, component-based methods did not demonstrate an advantage over the simple regression method. Conclusion: The newly proposed evaluation criterion showed to be an effective approach to evaluate 252 results from 36 data sets and 7 different methods. Significance: Currently, the regression method provides the most robust and stable results and is therefore the state-of-the-art-method for fully automated reduction of ocular artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.