The neurogenic loci of Drosophila are required for proper partitioning of ectodermal cells into epidermal versus neural lineages. The loci appear to encode components of a developmental pathway involving cellular communication. In an effort to understand the role of the neurogenic locus mastermind in these processes, we have characterized its expression and sequence. The locus produces a number of transcripts that accumulate ubiquitously during early embryogenesis but more specifically in the central nervous system during later stages. Sequence analysis of a major cDNA product predicts an unusual protein containing an abundance of amino acid homopolymers and charge clusters typical of regulatory molecules. Nearly half of the mass of the predicted protein derives from only three amino acids: glutamine, glycine, and asparagine. Immunohistochemical studies of the protein in cell culture and early embryos show that the protein accumulates predominately in the nucleus.
An experimental analysis of neurogenesis requires a detailed understanding of wild-type neural development. Recent DiI cell lineage studies have begun to elucidate the family of neurons and glia produced by each Drosophila embryonic neural precursor (neuroblast). Here we use DiI labeling to extend and clarify previous studies, but our analysis differs from previous studies in four major features: we analyze and compare lineages of every known embryonic neuroblast; we use an in vivo landmark (engrailed-GFP) to increase the accuracy of neuroblast identification; we use confocal fluorescence and Nomarski microscopy to collect three-dimensional data in living embryos simultaneously for each DiI-labeled clone, the engrailed-GFP landmark, and the entire CNS and muscle target field (Nomarski images); and finally, we analyze clones very late in embryonic development, which reveals novel cell types and axon/dendrite complexity. We identify the parental neuroblasts for all the cell types of the embryonic CNS: motoneurons, intersegmental interneurons, local interneurons, glia and neurosecretory cells (whose origins had never been determined). We identify muscle contacts for every thoracic and abdominal motoneuron at stage 17. We define the parental neuroblasts for neurons or glia expressing well-known molecular markers or neurotransmitters. We correlate Drosophila cell lineage data with information derived from other insects. In addition, we make the following novel conclusions: (1) neuroblasts at similar dorsoventral positions, but not anteroposterior positions, often generate similar cell lineages, and (2) neuroblasts at similar dorsoventral positions often produce the same motoneuron subtype: ventral neuroblasts typically generate motoneurons with dorsal muscle targets, while dorsal neuroblasts produce motoneurons with ventral muscle targets. Lineage data and movies can be found at http://www.biologists.com/Development/movies/dev8623.htmlhttp://www.neuro.uoregon.edu/doelab/lineages/
Motor neurons are defined by their axon projections, which exit the CNS to innervate somatic or visceral musculature, yet remarkably little is known about how motor axons are programmed to exit the CNS. Here, we describe the role of the Drosophila Zfh1 transcription factor in promoting axon exit from the CNS. Zfh1 is detected in all embryonic somatic motor neurons, glia associated with the CNS surface and motor axons, and one identified interneuron. In zfh1 mutants, ventral projecting motor axons often stall at the edge of the CNS, failing to enter the muscle field, despite having normal motor neuron identity. Conversely, ectopic Zfh1 induces a subset of interneurons--all normally expressing two or more "ventral motor neuron transcription factors" (e.g. Islet, Hb9, Nkx6, Lim3)--to project laterally and exit the CNS. We conclude that Zfh1 is required for ventral motor axon exit from the CNS.
huckebein encodes a putative zinc finger protein expressed in a subset of Drosophila CNS precursors, including the NB 4-2/GMC 4-2a/RP2 cell lineage. In huckebein mutant embryos, GMC 4-2a does not express the cell fate marker EVEN-SKIPPED; conversely, huckebein overexpression produces a duplicate EVEN-SKIPPED-positive GMC 4-2a. We use Dil to trace the entire NB 4-2 lineage in wild-type and huckebein mutant embryos. Loss of huckebein does not affect the number, position, or type of neurons in the NB 4-2 lineage; however, all motoneurons show axon pathfinding defects and never terminate at the correct muscle. Thus, huckebein regulates aspects of GMC and neuronal identity required for proper motoneuron axon pathfinding in the NB 4-2 lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.