Physical, mechanical, thermal, and dielectric behavior of surface modified hexagonal boron nitride (hBN) in epoxy matrix was investigated in this paper. Effective treatment of microsize boron nitride involved silane coupling agent, (γ‐aminopropyl)triethoxysilane such that the coating resulted from the treatment amounted to 2% of the weight of silane coupling agent of the treated BN. The present work revealed that the chemical treatment of BN surface could effectively enhance the adhesion between matrix and filler material. The dispersion and wettability of the BN powder in epoxy matrix after surface treatment were improved. These imparted improved physical and excellent mechanical and thermal properties to the developed material. The experimental study on thermal properties of fabricated composites indicated that incorporation of modified particles exhibits improved glass transition temperature. As filler loading increases, coefficient of thermal expansion of composite decreases which further decreases when treated filler were used. Further, appreciable improvement in thermal conductivity is obtained when treated hBN is used in place of untreated one. The dielectric properties are investigated for wide frequency range and filler content and found to be increased with hBN content and decrease with frequency enhancement. Furthermore, mechanical properties of such composites were also largely enhanced when treated fillers were used. With modified properties, the presently developed material is suitable for microelectronic applications.
In the present article, an investigation is presented on epoxy-based composites where the discontinuous phases are microsized boron nitride and sisal fiber (SF). Both the reinforcing materials are surface modified before incorporating them into the epoxy matrix. Hexagonal boron nitride (hBN) surface is treated by silane-coupling agent, whereas the aqueous NaOH solution is used to modify the surface of SF. The effect of fillers on the physical, mechanical, thermal, and dielectric properties of hybrid composites is studied through experimentation. The result shows that the inclusion of hBN increases the thermal conductivity of epoxy appreciably and dielectric constant marginally, while the inclusion of SF reduces the thermal conductivity marginally and dielectric constant appreciably. The maximum thermal conductivity of 1.88 W/m-K is obtained for the combination of 30 wt% hBN and 3 wt% SF. For the same combination, the dielectric constant is 4.57 at 1 GHz, which is almost similar to neat epoxy. Also, other properties like compressive strength, hardness, glasstransition temperature, and coefficient of thermal expansion improve when combinations of ceramic filler and natural fiber were incorporated in the epoxy matrix. Due to outstanding comprehensive properties, epoxy/hBN/SF composites found potential application in wide microelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.