The data on any aspect of public health, including that on infant mortality, has inbuilt hierarchical structure. Using traditional regression approach in data analysis, i.e., ignoring hierarchical structure, either at micro (individual) or at macro (community) level will be avoiding desired assumption related to independence of records. Accordingly, this may result into distortion in the results due to probable underestimation of standard error of the regression coefficients. To be more specific, an irrelevant covariate may emerge as an important covariate leading to inappropriate public health implications. To overcome this problem, the objective of the present work was to deal with multilevel analysis of the data on infant mortality available under second round of National family Health Survey and notify changes in results under traditional regression analysis that ignores hierarchical structure of data. This method provides more accurate results leading to meaningful public health implications. In addition, estimation of variability at different levels and their covariance are also obtained. The results indicate that the community (e.g., state) level characteristics still have major role regarding infant mortality in India. Further, if computational facilities are available, multilevel analysis may be preferred in dealing with data involving hierarchical structure leading to accurate results having meaningful public health implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.