Fine particulate matter (PM2.5) is a major criteria pollutant affecting the environment, health and climate. In India where ground-based measurements of PM2.5 is scarce, it is important to have a long-term database at a high spatial resolution for an efficient air quality management plan. Here we develop and present a high-resolution (1-km) ambient PM2.5 database spanning two decades (2000–2019) for India. We convert aerosol optical depth from Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved by Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm to surface PM2.5 using a dynamic scaling factor from Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) data. The satellite-derived daily (24-h average) and annual PM2.5 show a R2 of 0.8 and 0.97 and root mean square error of 25.7 and 7.2 μg/m3, respectively against surface measurements from the Central Pollution Control Board India network. Population-weighted 20-year averaged PM2.5 over India is 57.3 μg/m3 (5–95 percentile ranges: 16.8–86.9) with a larger increase observed in the present decade (2010–2019) than in the previous decade (2000 to 2009). Poor air quality across the urban–rural transact suggests that this is a regional scale problem, a fact that is often neglected. The database is freely disseminated through a web portal ‘satellite-based application for air quality monitoring and management at a national scale’ (SAANS) for air quality management, epidemiological research and mass awareness.
The determination of the material coefficients for Ogden, Mooney-Rivlin, Peng, and Peng-Landel material models using simple ASTM D 412 tensile data is shown to be a manageable task. The application of the various material models are shown to be subject to the type and level of deformation expected, with Ogden showing the best correlation with experimental data over a large strain range for the three types of strain investigated. At low strains, all of the models showed reasonable correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.