The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this publication we describe enhancements made to our data processing pipeline and to our website to adapt to an ever-increasing information content. The number of sequences in UniProtKB has risen to over 227 million and we are working towards including a reference proteome for each taxonomic group. We continue to extract detailed annotations from the literature to update or create reviewed entries, while unreviewed entries are supplemented with annotations provided by automated systems using a variety of machine-learning techniques. In addition, the scientific community continues their contributions of publications and annotations to UniProt entries of their interest. Finally, we describe our new website (https://www.uniprot.org/), designed to enhance our users’ experience and make our data easily accessible to the research community. This interface includes access to AlphaFold structures for more than 85% of all entries as well as improved visualisations for subcellular localisation of proteins.
A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In cancer, a biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis and epidemiology. These markers can be assayed in non-invasively collected biofluids. However, few cancer biomarkers are highly sensitive and specific for cancer detection at the present time. Consequently, biomarkers are not yet ready for routine use due to challenges in their clinical validation for early disease detection, diagnosis and monitoring to improve long-term survival of patients.
Oral cancer is one of the most common cancers in India and south-east Asian region consisting of more than 50% of all malignant tumors. Along with many known risk factors, infection of Human Papillomavirus (HPV) has been associated with the development of oral cancer and is suggested to modulate host cell transcription. Reciprocally, cellular transcription factors, such as NF-jB and AP-1 are known to modulate the expression of viral and other genes involved in the development of cancer. In the absence of data on NF-jB in relation to HPV in oral cancer, we studied the DNA binding activity and expression pattern of NF-jB family of proteins in different stages of oral cancer and correlated with HPV infection that has been associated with better prognosis of the disease. A total of 110 fresh oral tissue biopsies were collected comprising 10 normal controls, 34 precancer and 66 oral cancer lesions prior to chemotherapy/radiotherapy. Diagnosis of HPV was done by both consensus and type-specific PCR. Electrophoretic mobility shift assays, western blots and immunohistochemical analysis were performed to assess the binding activity and expression pattern of NF-jB family of proteins (p50, p65, p52, c-Rel, RelB and Bcl-3) in oral tissue biopsies. Twenty seven percent (18/66) of the oral cancer biopsies showed the presence of HPV infection exclusively of high risk HPV type 16, which was primarily associated with the well differentiated squamous cell carcinomas (WDSCC). We observed a high constitutive activation of NF-jB with concomitant upregulated expression of all the NF-jB members in oral cancer tissues. Expression of NF-jB components gradually increased as the severity of lesion increased from precancer to invasive cancer. NF-jB p50 was found to be the major DNA binding component, which is indicative of homodimerization of p50 subunits. Interestingly, in HPV16 infected oral cancers although p50 showed high binding activity, p65 also showed a partial involvement as evidenced in supershift assay. Both by western blotting and immunohistochemistry, a differential overexpression and nuclear localization of p50, p65 and partially of Bcl-3 were observed in HPV16 positive oral cancer patients that also showed an over-expression of p21. We therefore, demonstrate a constitutive activation and differential expression of NF-jB proteins, which change as a function of severity of oral lesions during development of oral cancer. The NF-jB DNA binding is primarily due to homodimerization of p50 but infection of high risk HPV promotes participation of p65 in NF-jB complex formation, leading to heterodimerization of p50/p65. We propose that the involvement of p65 in HPV infected oral cancer may be linked to improved differentiation and better prognosis of the disease when treated. ' 2006 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.