Diabetic foot complications are the most common occurring problems throughout the globe, resulting in devastating economic crises for the patients, families and society. Diabetic foot ulcers (DFUs) have a neuropathic origin with a progressive prevalence rate in developing countries compared with developed countries among diabetes mellitus patients. Diabetic patients that are of greatest risk of ulcers may easily be diagnosed with foot examination. Economic burden may be carefully examined. The budget costing must include both the clinical and social impact of the patients.
The novel coronavirus severe acute respiratory syndrome-CoV-2 (SARS-CoV-2) is responsible for COVID-19 infection. The COVID-19 pandemic represents one of the worst global threats in the 21st century since World War II. This pandemic has led to a worldwide economic recession and crisis due to lockdown. Biomedical researchers, pharmaceutical companies, and premier institutes throughout the world are claiming that new clinical trials are in progress. During the severe phase of this disease, mechanical ventilators are used to assist in the management of outcomes; however, their use can lead to the development of pneumonia. In this context, mesenchymal stem cell (MSC)-derived exosomes can serve as an immunomodulation treatment for COVID-19 patients. Exosomes possess anti-inflammatory, pro-angiogenic, and immunomodulatory properties that can be explored in an effort to improve the outcomes of SARS-CoV-2-infected patients. Currently, only one ongoing clinical trial (NCT04276987) is specifically exploring the use of MSC-derived exosomes as a therapy to treat SARS-CoV-2-associated pneumonia. The purpose of this review is to provide insights of using exosomes derived from mesenchymal stem cells in management of the co-morbidities associated with SARS-CoV-2-infected persons in direction of improving their health outcome. There is limited knowledge of using exosomes in SARS-CoV-2; the clinicians and researchers should exploit exosomes as therapeutic regime.
Diabetic peripheral neuropathy (DPN) is a long-term complication associated with nerve dysfunction and uncontrolled hyperglycemia. In spite of new drug discoveries, development of effective therapy is much needed to cure DPN. Here, we have developed a combinatorial approach to provide biochemical and electrical cues, considered to be important for nerve regeneration. Exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) were fused with polypyrrole nanoparticles (PpyNps) containing liposomes to deliver both the cues in a single delivery vehicle. We developed DPN rat model and injected intramuscularly the fused exosomal system to understand its long-term therapeutic effect. We found that the fused system along with electrical stimulation normalized the nerve conduction velocity (57.60 ± 0.45 m/s) and compound muscle action potential (16.96 ± 0.73 mV) similar to healthy control (58.53 ± 1.10 m/s; 18.19 ± 1.45 mV). Gastrocnemius muscle morphology, muscle mass, and integrity were recovered after treatment. Interestingly, we also observed paracrine effect of delivered exosomes in controlling hyperglycemia and loss in body weight and also showed attenuation of damage to the tissues such as the pancreas, kidney, and liver. This work provides a promising effective treatment and also contribute cutting edge therapeutic approach for the treatment of DPN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.