Summary Recently, it has been shown that the presence of residual oil in a formation can have a considerable influence on the trapping mechanisms for particles present in reinjected produced water (Ali 2007; Ali et al. 2005, 2007, 2009). This article reports on a further set of extensive coreflow experiments that confirm and extend these results. The tests were conducted in a computerized-tomography (CT) scanner, allowing direct observation of the buildup of particle deposition along the core. These experiments are relevant to operational issues associated with produced-water reinjection (PWRI). In many cases, produced water is injected into formations containing oil, so reduced oil saturation is achieved rapidly in the area around the well. Even if the well is outside the oil zone, trapped oil droplets are always present in produced water, and a residual-oil zone will gradually build up around the well. Major differences are found between the deposition profiles for fully water-saturated cores and the cores having residual-oil saturation. In particular, particles penetrate deeper into the core with residual-oil saturation, and considerably more particles pass completely through the core without being trapped. The X-ray technique allows direct observation during the experiment of the deposition process inside the core, eliminating the complicating effect of any external filter cake. As a result, an analysis can be performed of the deposition parameters relevant inside the core using deep-bed-filtration theory, and the results of this analysis are presented. In particular, it is shown that the values of the filtration function determined from the CT-scan (X-ray) data are consistent with those obtained from analysis of the effluent concentration. Moreover, both methods of analysis find quite clearly that the filtration coefficient increases with decreasing flow rate. The results indicate that formation damage near a wellbore during water injection will be reduced by the presence of residual oil, and that particles will penetrate deeper into the formation. The result is also relevant to injection under fracturing conditions because particle deposition in the wall of the fracture (where residual oil may be present) is one of the mechanisms governing fracture growth.
Recently it has been shown that the presence of residual oil in a formation can have a considerable influence on the trapping mechanisms for particles present in re-injected produced water (Ali 2007, Ali et al 2005, 2007). This article reports on a further set of extensive coreflow experiments which confirm and extend these results. The tests were conducted in a CTscanner, allowing direct observation of the build-up of particle deposition along the core.These experiments are relevant to operational issues associated with PWRI (Produced Water Re-Injection). In many cases, produced water is injected into formations containing oil, so reduced oil saturation is achieved rapidly in the area around the well. Even if the well is outside the oil zone, trapped oil droplets are always present in produced water, and a residual oil zone will gradually build-up around the well.Major differences are found between the deposition profiles for fully water saturated cores and the cores having residual oil saturation. In particular, particles penetrate deeper into the core with residual oil saturation and considerably more particles pass completely through the core without being trapped. The X-ray technique allows direct observation during the experiment of the deposition process inside the core, eliminating the complicating effect of any external filter cake. As a result, an analysis can be performed of the deposition parameters relevant inside the core, using Deep-bed Filtration Theory, and the results of this analysis are presented. In particular, it is shown that the values of the filtration function determined from the CT-scan (Xray) data are consistent with those obtained from analysis of the effluent concentration. Moreover, both methods of analysis find quite clearly that the filtration coefficient increases with decreasing flowrate.The results indicate that formation damage near a wellbore during water injection will be reduced by the presence of residual oil, and that particles will penetrate deeper into the formation. The result is also relevant to injection under fracturing conditions, since particle deposition in the wall of the fracture (where residual oil may be present) is one of the mechanisms governing fracture growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.