The reuse of reclaimed asphalt material (RAM) and polyethylene terephthalate (PET) plastic waste is a reliable approach to limit the use of virgin aggregates for road construction and mitigate environmental challenges. This study highlights the structural performance of the cementitious base or cement-treated base (CTB) layer by incorporating reclaimed asphalt and plastic waste material. Structural compatibility of CTB layer with different proportions of RAM (20%, 45%, 70% and 95%), virgin aggregates and plastic waste (5%) is recognized by the moisture-density relationship, unconfined compressive, indirect tensile strength, flexural strength and California bearing ratio tests. In the current study, a ranking methodology is used to analyze the overall suitability of the cementitious base mix proportions using different laboratory test parameters. Furthermore, a finite element analysis using the ANSYS software is performed to investigate the effect of CTB layer on the pavement structural responses. Also, using the central public works department guidelines, a cost comparative study is provided. Experimental results showed that all the cementitious base mixes met the requirements for the unconfined compressive strength, except for the 95% and 70% RAM mixes. Therefore, 20%-45% of RAM can partially be used in the CTB layer to replace virgin aggregates partially. The finite element analysis results showed that CTB reduced fatigue strain by 57% and surface deformation by 47%. Moreover, it has been concluded that by utilizing a cementitious base with RAM, there is a 30% cost reduction. KEYWORDS: Reclaimed asphalt material, Cement-treated base, Polyethylene terephthalate, Finite element analysis, Unconfined compressive strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.