Several analogs of the potent dopamine (DA) transporter ligand 4-[2-[bis(4-fluorophenyl)-methoxy]ethyl]-1-(3-phenylpropyl)piperidine, 1b, were made and biologically evaluated for their binding at the DA and serotonin (5HT) transporters in rat striatal membranes. Different alkyl chain lengths and substitutions were introduced in these molecules to generate an optimum activity and selectivity for the DA transporter. In general, unsubstituted and fluoro-substituted compounds were the most active and selective for the DA transporter. The compound 4-[2-(diphenylmethoxy)ethyl]-1-benzylpiperidine, 9a, showed high potency and was the most selective for the DA transporter (5HT/DA = 49) in this series of compounds. Some of these novel analogs were found to be more selective in binding at the DA transporter than the original GBR 12909 molecule, 1-[2-]bis(4-fluorophenyl)methoxy]ethyl]-4-(3- phenylpropyl)piperidine.
We have recently developed novel high-affinity blockers for the dopamine transporter (DAT) by carrying out structure-activity studies of GBR 12909 molecule piperidine analogs. To investigate the molecular basis of binding of these compounds in comparison to known sites of action of GBR 12909, cocaine, and benztropine analogs, we developed a piperidine-based photoaffinity label [(125)I]4-[2-(diphenylmethoxy)ethyl]-1-[(4-azido- 3-iodophenyl)methyl]-piperidine [(125)I]AD-96-129), and used proteolysis and epitope-specific immunoprecipitation to identify the protein domains that interact with the ligand. [(125)I]AD-96-129 became incorporated into two different regions of the DAT primary sequence, an N-terminal site containing transmembrane domains (TMs) 1 to 2, and a second site containing TMs 4 to 6. Both of these regions have been identified previously as sites involved in the binding of other DAT photoaffinity labels. However, in contrast to the previously characterized ligands that showed nearly complete specificity in their binding site incorporation, [(125)I]AD-96-129 became incorporated into both sites at comparable levels. These results suggest that the two domains may be in close three-dimensional proximity and contribute to binding of multiple uptake blockers. We also found that DATs labeled with [(125)I]AD-96-129 or other photoaffinity labels displayed distinctive sensitivities to proteolysis of a site in the second extracellular loop, with protease resistance related to the extent of ligand incorporation in the TM4 to 6 region. These differences in protease sensitivity may indicate the relative proximity of the ligands to the protease site or reflect antagonist-induced conformational changes in the loop related to transport inhibition.
Parkinson's disease (PD) is a multifactorial progressive neurological disorder. Pathological hallmarks of PD are characterized by the presence of α-synuclein (αSyn) aggregates known as Lewy bodies. αSyn aggregation is one of the leading causes for the neuronal dysfunction and death in PD. It is also associated with neurotransmitter and calcium release. Current therapies of PD are limited to only symptomatic relief without addressing the underlying pathogenic factors of the disease process such as aggregation of αSyn. Consequently, the progression of the disease continues with the current therapies. Therefore, the modulation of αSyn aggregation is an emerging approach as a novel therapeutic target to treat PD. There are two major aspects that might be targeted therapeutically: first, protein is prone to aggregation, therefore, anti-aggregative or compounds that can break the pre-existing aggregates should be helpful. Second, there are number of molecular events that may be targeted to combat the disease.
Parkinson's disease (PD) is t he second most common form of neurodegenerative disorders that results from the progressive loss of dopaminergic neurons in the midbrain substantia nigra pars compacta (SNpc) triggering profound motor perturbation, as well as cognitive, sensory and mood deficits. Although these symptoms can be improved using currently available dopamine replacement strategies, they are not able to slow the neurodegenerative process that underlies PD progression. Following the discovery of the D3 receptor from molecular cloning, it has gained much attention as a potential therapeutic target for the treatment of PD due to their localization in the limbic regions of the brain as well as pharmacologic similarity to the D2 receptor subtype. Of particular interest, D3 receptor-selective agonists appear to have neuroprotective effects apart from their ability to relieve PD symptoms. Owing to the distinct significance of D3 receptor in mediating diverse neurological effects, it represents a unique target for therapeutic intervention in PD with much less undesirable side effects. Herein, we review progress in the development of D3 receptor-selective agonist molecules having a broad spectrum of affinities, selectivities as well as unique pharmacological properties directed at slowing the neurodegeneration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.