Young female patients have highest risk of being falsely diagnosed with acute appendicitis and hence unnecessary surgery. Bilirubin and lipase exhibit no correlations with acute appendicitis. Combined interpretation of WCC or CRP abnormal results yields competitive sensitivity as CT. Hencewe would suggest that, under the appropriate clinical context, one can use both WCC and CRP as a simple tool to support the diagnosis of appendicitis. If both tests show normal results, we would highly recommend considering alternative diagnosis.
BackgroundMicro-CT holds promising potential for phenotyping and histological purposes. However, few have clarified the difference in the neuroimaging quality between ex vivo and in vivo micro-CT scanners. In addition, no direct comparison has been made between micro-CT scans and standard microscopy. Furthermore, while the efficacy of various stains for yielding soft-tissue contrast in CT scans have been compared in other studies for embryos, staining protocols for larger samples have yet to be clarified. Lastly, post-acquisition processing for image enhancements have not been addressed.MethodsComparisons of postnatal rat brain micro-CT scans obtained through custom-built ex vivo and commercially available in vivo micro-CT scanners were made. Subsequently, the scanned rat brains were then H&E stained for microscopy. Neuroanatomy on micro-CT scanning and 4× microscopy of rat brain were compared.Diffusion and perfusion staining using iodine or PTA were trialled on adult and neonatal encapsulated rat brains. Different combinations of stain concentration and staining time were trialled.Post-acquisition denoising with NLM filter was completed using a modern General-Purpose Graphic Processing Unit (GPGPU) and custom code for prompt processing.ResultsEx vivo micro-CT scans of iodine-stained postnatal rat brains yields 3D images with details comparable to 4× H&E light micrographs. Neural features shown on ex vivo micro-CT scans were significantly more distinctive than those on in vivo micro-CT scans.Both ex vivo and in vivo micro-CT scans required diffusion staining through small craniotomy. Perfusion staining is ineffective. Iodine staining was more efficient than PTA in terms of time.Consistently, enhancement made by NLM denoising on in vivo micro-CT images were more pronounced than that on ex vivo micro-CT scans due to their difference in image signal-to-noise indexes.ConclusionsMicro-CT scanning is a powerful and versatile visualization tool available for qualitative and potential quantitative anatomical analysis. Simple diffusion staining via craniotomy with 1.5% iodine is an effective and minimal structural-invasive method for both in vivo and ex vivo micro-CT scanning for studying the microscopic morphology of neonatal and adult rat brains. Post-acquisition NLM filtering is an effective enhancement technique for in vivo micro-CT brain scans.Electronic supplementary materialThe online version of this article (10.1186/s12880-018-0280-6) contains supplementary material, which is available to authorized users.
Nuclear magnetic resonance (NMR) [Formula: see text] inversion is an ill-posed problem in which regularization techniques are usually adopted to suppress the oscillations caused by noise in the solutions. The maximum entropy concept provides an unbiased way to obtain information from incomplete data, and it implicitly imposes a positive constraint on probability distribution, so we used the maximum entropy method to invert NMR echo data. We have developed a simple and effective method for solving the objective function of the maximum entropy method. First, the solution was replaced by a positive function to achieve the positive constraint of the solution, the objective function was converted to an unconstrained one, and then the Levenberg-Marquardt method was used to solve the newly obtained unconstrained objective function. To suppress the highly tilted tail at the short relaxation time of the [Formula: see text] distribution, a modified or normalized Shannon entropy function was used to replace the standard Shannon entropy function as the penalty term. Furthermore, the S-curve method was used to select the regularization parameter and the formula of the slope of the S-curve was developed. We have determined that the maximum entropy method was better able to separate the peaks of short and long relaxation times in the [Formula: see text] distribution in comparison with the truncated singular value decomposition method. This was true for low signal-to-noise ratio data derived from numerical simulation and the NMR log. In addition, the short relaxation peak caused by the norm smoothing method can also be reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.