Soil and water salinity and associated problems are a major challenge for global food production. Strategies to cope with salinity include a better understanding of the impacts of temporal and spatial dynamics of salinity on soil water balances vis-à-vis evapotranspiration (ET) and devising optimal irrigation schedules and efficient methods. Both steady state and transient models are now available for predicting salinity effects on reduction of crop growth and means for its optimization. This paper presents a brief review on the different approaches available, focusing on the FAO56 framework for coping with the effects of soil salinity on crop ET and yields. The FAO56 approach, applied widely in soil water balance models, is commonly used to compute water requirements, including leaching needs. It adopts a daily stress coefficient (K s ) representing both water and salt stresses to adjust the crop coefficient (K c ) when it is multiplied by the grass reference ET o to obtain the actual crop ET values for saline environments (ET c act = K s K c ET o ). The same concept is also applied to the dual K c approach, with K s used to adjust the basal crop coefficient (K cb ). A review on applications of K s is presented showing that the FAO56 approach may play an interesting role in water balance computations aimed at supporting irrigation scheduling. Transient state models, through alternative formulations, provide additional solutions for quantification of the salinity build-up in the root zone. These include irrigation-induced salinity, upward movement of salts from saline ground water-table, and sodification processes. Regardless of the approach, these models are now very much capable of supporting irrigation water management in saline stress conditions. For maintaining crop growth under salinity environments, soil-crop-water management interventions consistent with site-specific conditions are then discussed. Adequateness of irrigation methods, cyclic uses of multi-salinity waters and proper irrigation scheduling are further analyzed as examples of efficient means to obviate the effects of salinity.
Plants are likely to be affected by simultaneous salinity and boron (B) toxicity stresses due to exposure to soils with high levels of naturally occurring salinity and B, or due to irrigation with water containing high levels of salts, including B. Inadequate information regarding the response of plants to the combination of excess B and salinity on plant growth and yield is available, and there is no consensus concerning mutual relations between salinity stress and B toxicity. Growth and yield of bell pepper (Capsicum annuum L.) were measured at different B and salinity levels in two greenhouse experiments. The results from these experiments and from published data for wheat, tomato and chickpea were analyzed according to the Abbott method to define the combined effect of B and salinity on plant growth and yield. Application of the Abbott method for the experiments on peppers generally implied an antagonistic relationship for excess B and salinity. In other words, toxic effects on growth and yield were less severe for combined B toxicity and salinity than what would be expected if effects of the individual factors were additive. Similar antagonistic characteristics were found using data from three of the five studies reported in the literature. The mechanism of relationships between B and salinity in plants is not clear and several options are discussed. Prominent among the possible explanations are reduced uptake of B in the presence of Cl and reduced uptake of Cl in the presence of B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.