Polar codes have promising error-correction capabilities. Yet, decoding polar codes is often challenging, particularly with large blocks, with recently proposed decoders based on list-decoding or neural-decoding. The former applies multiple decoders or the same decoder multiple times with some redundancy, while the latter family utilizes emerging deep learning schemes to learn to decode from data. In this work we introduce a novel polar decoder that combines the list-decoding with neuraldecoding, by forming an ensemble of multiple weighted beliefpropagation (WBP) decoders, each trained to decode different data. We employ the cyclic-redundancy check (CRC) code as a proxy for combining the ensemble decoders and selecting the most-likely decoded word after inference, while facilitating realtime decoding. We evaluate our scheme over a wide range of polar codes lengths, empirically showing that gains of around 0.25dB in frame-error rate could be achieved. Moreover, we provide complexity and latency analysis, showing that the number of operations required approaches that of a single BP decoder at high signal-to-noise ratios.This project has received funding from the Israeli 5G-WIN consertium. A. Goldmann, O. Vayner, T. Raviv and N. Shlezinger are with the School of ECE, Ben-Gurion University of the Negev, Beer-Sheva, Israel
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.