The goal of subspace learning is to find a k-dimensional subspace of R d , such that the expected squared distance between instance vectors and the subspace is as small as possible. In this paper we study subspace learning in a partial information setting, in which the learner can only observe r ≤ d attributes from each instance vector. We propose several efficient algorithms for this task, and analyze their sample complexity.
We consider online learning in an adversarial, non-convex setting under the assumption that the learner has an access to an offline optimization oracle. In the general setting of prediction with expert advice, [11] established that in the optimization-oracle model, online learning requires exponentially more computation than statistical learning. In this paper we show that by slightly strengthening the oracle model, the online and the statistical learning models become computationally equivalent. Our result holds for any Lipschitz and bounded (but not necessarily convex) function. As an application we demonstrate how the offline oracle enables efficient computation of an equilibrium in non-convex games, that include GAN (generative adversarial networks) as a special case.
We study the relationship between the notions of differentially private learning and online learning in games. Several recent works have shown that differentially private learning implies online learning, but an open problem of Neel, Roth, and Wu [27] asks whether this implication is efficient. Specifically, does an efficient differentially private learner imply an efficient online learner?In this paper we resolve this open question in the context of pure differential privacy. We derive an efficient black-box reduction from differentially private learning to online learning from expert advice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.