The time-complexity of deterministic and randomized protocols for achieving broadcast (distributing a message from a source to all other nodes) in arbitrary multi-hop radio networks is investigated. In many such networks, communication takes place in synchronous time-slots. A processor receives a message at a certain time-slot if exactly one of its neighbors transmits at that time-slot. We assume no collision-detection mechanism; i.e., it is not always possible to distinguish the case where no neighbor transmits from the case where several neighbors transmit simultaneously. We present a randomized protocol that achieves broadcast in time which is optimal up to a logarithmic factor. In particular, with probability 1-E, the protocol achieves broadcast within O((D + log n/s) 'log n) time-slots, where n is the number of processors in the network and D its diameter. On the other hand, we prove a linear lower bound on the deterministic time-complexity of broadcast in this model. Namely, we show that any deterministic broadcast protocol requires 8(n) time-slots, even if the network has diameter 3, and n is known to all processors. These two results demonstrate an exponential gap in complexity between randomization and determinism.
Abstract. A grid graph is a node-induced finite subgraph of the infinite grid. It is rectangular if its set of nodes is the product of two intervals. Given a rectangular grid graph and two of its nodes, we give necessary and sufficient conditions for the graph to have a Hamilton path between these two nodes. In contrast, the Hamilton path (and circuit) problem for general grid graphs is shown to be NP-complete.This provides a new, relatively simple, proof of the result that the Euclidean traveling salesman problem is NP-complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.