Background: The field of computer-assisted mapping of lung sounds is constantly evolving and several devices have been developed in this field. Objectives: Our objective was to evaluate a new computer-assisted lung sound imaging system, ‘vibration response imaging’ (VRI), that records and creates a dynamic image of breath sounds. We postulated that the VRI display format would qualitatively and quantitatively reveal breath sound distribution throughout the breathing cycle. Methods: Lung sounds were recorded from 5 healthy adults and 14 patients with various respiratory illnesses using VRI. The lung sounds were processed by the VRI software, which incorporates an algorithm to convert breath sounds in the frequency range of 150–250 Hz to a dynamic image and quantitative assessment of breath sound distribution. Results: Images and quantifications from recordings of the healthy adults showed distinct patterns for inspiration and expiration. Images and quantifications from the subjects with respiratory illness differed substantially from the images of the healthy subjects. Both healthy and pathological subjects presented some expected characteristics of breath sound distribution. Conclusions: The VRI device may provide a new perspective in acoustic imaging and quantification of breath sounds by adding aspects of time analysis and quantification of distribution to existing methods. Further studies will be required in order to establish reliability of repeated recordings and to validate the sensitivity of the system in detecting various lung pathologies.
Introduction: Blood has become a major source for wound care products due to its primary role in wound healing. The blood clot provides a fibrin scaffold that serves as a protective, provisional extracellular matrix. The clot dries out and becomes a protective scab, under which a moist wound environment can be maintained. In this study, the safety of an autologous whole blood clot product was evaluated in porcine models. Methods: A total of 24 full thickness dermal wounds were analyzed (6 wounds on each of the 4 porcine models). Eighteen wounds received the whole blood clot product and 6 were treated with saline soaked gauze for 18 days. Reapplications occurred on days 6 and 12. Histological evaluations were carried out to detect the presence of kaolin. Percentage area reduction and adverse events related to the whole blood clot product were assessed. Results: Microscopic evaluation revealed that the whole blood clot product was associated with partial to complete wound reepithelialization, whereas minimal reepithelialization was present with the control. The mean reepithelialization score for the control wounds was 1.0, or 2.3 times less than the mean score for the intervention group. By day 18, the mean reduction in wound area was 41% (SD: 3.8) for the control wounds versus 66% (SD: 6.4) for the wounds treated with the whole blood clot product (P<0.0001).
LVEF can be estimated using a novel acoustic-based device. This device may assist in triage of patients according to LVEF prior to definitive assessment of LVEF by echocardiography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.