Ensemble methods have been shown to be an effective tool for solving multi-label classification tasks. In the RAndom k-labELsets (RAKEL) algorithm, each member of the ensemble is associated with a small randomly-selected subset of k labels. Then, a single label classifier is trained according to each combination of elements in the subset. In this paper we adopt a similar approach, however, instead of randomly choosing subsets, we select the minimum required subsets of k labels that cover all labels and meet additional constraints such as coverage of inter-label correlations. Construction of the cover is achieved by formulating the subset selection as a minimum set covering problem (SCP) and solving it by using approximation algorithms. Every cover needs only to be prepared once by offline algorithms. Once prepared, a cover may be applied to the classification of any given multi-label dataset whose properties conform with those of the cover. The contribution of this paper is two-fold. First, we introduce SCP as a general framework for constructing label covers while allowing the user to incorporate cover construction constraints. We demonstrate the effectiveness of this framework by proposing two construction constraints whose enforcement produces covers that improve the prediction performance of random selection. Second, we provide theoretical bounds that quantify the probabilities of random selection to produce covers that meet the proposed construction criteria. The experimental results indicate that the proposed methods improve multi-label classification accuracy and stability compared with the RAKEL algorithm and to other state-of-the-art algorithms.
A new class of related algorithms for deblocking block-transform compressed images and video sequences is proposed in this paper. The algorithms apply weighted sums on pixel quartets, which are symmetrically aligned with respect to block boundaries. The basic weights, which are aimed at very low bit-rate images, are obtained from a two-dimensional function which obeys predefined constraints. Using these weights on images compressed at higher bit rates produces a deblocked image which contains blurred "false" edges near real edges. We refer to this phenomenon as the ghosting effect. In order to prevent its occurrences, the weights of pixels, which belong to nonmonotone areas, are modified by dividing each pixel's weight by a predefined factor called a grade. This scheme is referred to as weight adaptation by grading (WABG). Better deblocking of monotone areas is achieved by applying three iterations of the WABG scheme on such areas followed by a fourth iteration which is applied on the rest of the image. We refer to this scheme as deblocking frames of variable size (DFOVS). DFOVS automatically adapts itself to the activity of each block. This new class of algorithms produces very good subjective results and PSNR results which are competitive relative to available state-of-the-art methods.
In this paper we examine the effect of applying ensemble learning to the performance of collaborative filtering methods. We present several systematic approaches for generating an ensemble of collaborative filtering models based on a single collaborative filtering algorithm (single-model or homogeneous ensemble). We present an adaptation of several popular ensemble techniques in machine learning for the collaborative filtering domain, including bagging, boosting, fusion and randomness injection. We evaluate the proposed approach on several types of collaborative filtering base models: k-NN, matrix factorization and a neighborhood matrix factorization model. Empirical evaluation shows a prediction improvement compared to all base CF algorithms. In particular, we show that the performance of an ensemble of simple (weak) CF models such as k-NN is competitive compared with a single strong CF model (such as matrix factorization) while requiring an order of magnitude less computational cost.
Summary. We introduce a novel ensemble model based on random projections. The contribution of using random projections is two-fold. First, the randomness provides the diversity which is required for the construction of an ensemble model. Second, random projections embed the original set into a space of lower dimension while preserving the dataset's geometrical structure to a given distortion. This reduces the computational complexity of the model construction as well as the complexity of the classification. Furthermore, dimensionality reduction removes noisy features from the data and also represents the information which is inherent in the raw data by using a small number of features. The noise removal increases the accuracy of the classifier. The proposed scheme was tested using WEKA based procedures that were applied to 16 benchmark dataset from the UCI repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.