SUMMARY
The incidence of chronic allergic dermatitis is rapidly increasing. Regulatory control of this disease has not been adequately explored. Here we report that mast cell derived interleukin-2 (IL-2) contributes to the suppression of chronic allergic dermatitis. Mice deficient in IL-2 production, or deficient in mast cells (KitW-sh/W-sh), showed exacerbated dermatitis upon repeated oxazolone challenge when compared to their wild-type counterparts. Adoptive transfer of wild type, but not Il2−/−, mast cells into KitW-sh/W-sh mice dampened the inflammatory response. During the course of disease mast cell expansion occurred at the site of inflammation and also in the spleen, where production of IL-2 by mast cells was markedly enhanced. In the absence of mast cell IL-2 production, the ratio of activated to regulatory T cells at the site of inflammation was increased. Thus, MC-derived IL-2 contributes to the maintenance of suppression in chronic allergic skin inflammation.
A subset of mammalian genes is monoallelically expressed in a parent-of-origin manner. These genes are subject to an imprinting process that epigenetically marks alleles according to their parental origin during gametogenesis. Imprinted genes can be organized in clusters as exemplified by the 2-Mb domain on human chromosome 15q11-q13 and its mouse orthologue on chromosome 7c (ref. 1). Loss of this 2-Mb domain on the paternal or maternal allele results in two neurogenetic disorders, Prader-Willi syndrome (PWS) or Angelman syndrome (AS), respectively. Microdeletions on the paternal allele share a 4.3-kb short region of overlap (SRO), which includes the SNRPN promoter/exon1, cause PWS and silence paternally expressed genes. Microdeletions on the maternal allele share a 0.88-kb SRO located 35 kb upstream to the SNRPN promoter, cause AS and alleviate repression of genes on the maternal allele. Individuals carrying both AS and PWS deletions on the paternal allele show a PWS phenotype and genotype. These observations suggest that cis elements within the AS-SRO and PWS-SRO constitute an imprinting box that regulates the entire domain on both chromosomes. Here we show that a minitransgene composed of a 200-bp Snrpn promoter/exon1 and a 1-kb sequence located approximately 35 kb upstream to the SNRPN promoter confer imprinting as judged by differential methylation, parent-of-origin-specific transcription and asynchronous replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.