The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields’ action, it is by no means complete. The standard theory does not account for exogenously applied AEFs’ influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs’ actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs’ effects: the voltage-gated ion channel, bioelectrorheological, and electroporation models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical investigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.