This study investigated the effects of dietary l-arginine (Arg) and N-carbamylglutamate (NCG) supplementation on intestinal integrity, immune function, and oxidative status in intrauterine-growth-retarded (IUGR) suckling lambs. A total of 48 newborn Hu lambs of normal birth weight (CON) and IUGR were allocated randomly into four groups of 12 animals each: CON, IUGR, IUGR + 1% Arg, or IUGR + 0.1% NCG. All lambs were raised for a period of 21 days from 7 to 28 days after birth. The Arg or NCG group exhibited improved ( p < 0.05) final body weights compared to that of the IUGR group. In comparison to the IUGR lambs, the apoptotic percentage was lower ( p < 0.05) in the ileum of IUGR lambs supplemented with Arg and NCG. In addition, in comparison to IUGR, the concentrations of protein carbonyl and malondialdehyde were lower ( p < 0.05) and the reduced glutathione (GSH) concentration and ratio of GSH/oxidized glutathione were greater ( p < 0.05) in the jejunum, duodenum, and ileum of IUGR + 1% Arg or 0.1% NCG lambs. In comparison to the IUGR group, the mRNA abundance of myeloid differentiation factor 88, toll-like receptor 9, toll-like receptor 4, interleukin 6, and fuclear factor-κB was lower ( p < 0.05) and the mRNA abundance of superoxide dismutase 1, B-cell lymphoma/leukaemia 2, zonula occludens-1 (ZO-1), and occludin was greater in the ileum of the IUGR lambs supplemented with Arg or NCG. Furthermore, the protein abundance of ZO-1 and claudin-1 in the ileum was greater ( p < 0.05) in the IUGR + 1% Arg or 0.1% NCG lambs. The results show that Arg or NCG supplementation improves the growth, intestinal integrity, immune function, and oxidative status in IUGR Hu suckling lambs.
This study aimed to examine the role of thiamine in the local inflammation of ruminal epithelium caused by high-concentrate diets. Eighteen mid-lactating (148 ± 3 d in milk; milk yield = 0.71 ± 0.0300 kg/d) Saanen goats (body weight = 36.5 ± 1.99 kg; body condition score = 2.73 ± 0.16, where 0 = emaciated and 5 = obese) in parity 1 or 2 were selected. The goats were randomly divided into 3 groups (n = 6/group): (1) control diet (concentrate: forage 30:70), (2) high-concentrate diet (HC; concentrate: forage 70:30), and (3) highconcentrate diet with 200 mg of thiamine/kg of dry matter intake (THC; concentrate: forage 70:30). Goats remained on experimental diets for 8 wk. On the last day of 8 wk, ruminal and blood samples were collected to determine ruminal parameters, endotoxin lipopolysaccharide, and blood inflammatory cytokines. Goats were slaughtered to collect ruminal tissue to determine gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. Thiamine supplementation increased ruminal pH (6.03 vs. 5.42) compared with the HC group. Propionate (21.08 vs. 31.61 mM), butyrate (12.08 vs. 19.39 mM), lactate (0.52 vs. 0.71 mM), and free lipopolysaccharide (42.16 vs. 55.87 × 10 3 endotoxin units/mL) concentrations in ruminal fluid were lower in THC goats compared with HC goats. Similar to plasma interleukin 1β (IL-1β) concentration (209.31 vs. 257.23 pg/mL), blood CD8 + percentage (27.57 vs. 34.07%) also decreased in response to thiamine. Compared with HC goats, THC goats had lower ruminal epithelium activity of the enzymes myeloperoxidase and matrix metalloproteinase (MMP) 2 and 9. In contrast to HC, THC had downregulated mRNA expression of nuclear factor-κB (NFKB), TLR4, IL1B, MMP2, and MMP9 in ruminal epithelium. Thiamine supplementation led to lower relative protein expression of IL-1β, NF-κB unit p65, and phosphorylated NF-κB unit p65 in ruminal epithelium. Taken together, these results suggest that thiamine supplementation mitigates HC-induced local inflammation and ruminal epithelial disruption.
This research aims to explore the effect of L-arginine (Arg) upon lipopolysaccharide (LPS)-induced induction of the oxidative stress as well as subsequent apoptosis within ovine intestinal epithelial cells (IOECs). Through a 16 h incubation, cells were divided into four groups and the medium was replaced with different medium as follows: (1) control (Con), Arg-free Dulbecco's modified Eagle's F12 Ham medium (DMEM); (2) Arg treatment, Arg-free DMEM supplemented with 100 μM Arg;(3) LPS treatment, Arg-free DMEM supplemented with 10 μg/mL LPS; (4) LPS with Arg treatment, Arg-free DMEM supplemented with both 10 μg/mL LPS and 100 μM Arg. After culturing for 24 h in different mediums, some characteristics of cells in the four groups were measured. Addition of Arg increased cell viability induced with LPS compared with the LPS group (p < 0.05). Arg significantly decreased the release of dehydrogenase (LDH) and the production of malonaldehyde (MDA) (p < 0.05) within IOECs challenged by the LPS. Compared with the LPS group, cells treated with Arg and Arg + LPS increased (p < 0.05) mRNA as well as protein expression of glutathione peroxidase 1 (GPx1), catalase (CAT), superoxide dismutase 2 (SOD2), B-cell lymphoma 2 (Bcl2), quinone oxidoreductase 1 (NQO1), heme oxygenase (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). IOEC treatment with Arg reduced significantly (p < 0.05) apoptosis induced by the LPS (12.58 ± 0.79%). The results showed that Arg promoted the protein expression of Nrf2, up-regulated expression of the phase II metabolizing enzymes (NQO1 and HO-1), as well as antioxidative enzymes (GPx1, CAT, and SOD2) for alleviating oxidative injury and protected IOECs from LPS-induced apoptosis.
This study explores the roles of l-arginine (Arg) and N-carbamylglutamate (NCG) supplementation in the diet in intestine damage, energy state, as well as the associated protein kinase signaling pathways activated by AMP in intrauterine growth retarded (IUGR) suckling lambs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.