Crustaceans form the second largest subphylum on Earth, which includes Litopeneaus vannamei (Pacific whiteleg shrimp), one of the most cultured shrimp worldwide. Despite efforts to study the shrimp microbiota, little is known about it from shrimp obtained from the open sea and the role that aquaculture plays in microbiota remodeling. Here, the microbiota from the hepatopancreas and intestine of wild type (wt) and aquacultured whiteleg shrimp and pond sediment from hatcheries were characterized using sequencing of seven hypervariable regions of the 16S rRNA gene. Cultured shrimp with AHPND/EMS disease symptoms were also included. We found that (i) microbiota and their predicted metagenomic functions were different between wt and cultured shrimp; (ii) independent of the shrimp source, the microbiota of the hepatopancreas and intestine was different; (iii) the microbial diversity between the sediment and intestines of cultured shrimp was similar; and (iv) associated to an early development of AHPND/EMS disease, we found changes in the microbiome and the appearance of disease-specific bacteria. Notably, under cultured conditions, we identified bacterial taxa enriched in healthy shrimp, such as Faecalibacterium prausnitzii and Pantoea agglomerans, and communities enriched in diseased shrimp, such as Aeromonas taiwanensis, Simiduia agarivorans and Photobacterium angustum.
The high-quality draft genomes of two Vibrio parahaemolyticus strains, one that causes the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimps (FIM-S1708+), and another that does not (FIM-S1392−) are reported. A chromosome-scale assembly for the FIM-S1392− genome is reported here. The analysis of the two genomes gives some clues regarding the genomic differences between the strains.
Arginine kinase (AK) is a key enzyme for energetic balance in invertebrates. Although AK is a well-studied system that provides fast energy to invertebrates using the phosphagen phospho-arginine, the structural details on the AK-arginine binary complex interaction remain unclear. Herein, we determined two crystal structures of the Pacific whiteleg shrimp (Litopenaeus vannamei) arginine kinase, one in binary complex with arginine (LvAK-Arg) and a ternary transition state analog complex (TSAC). We found that the arginine guanidinium group makes ionic contacts with Glu225, Cys271 and a network of ordered water molecules. On the zwitterionic side of the amino acid, the backbone amide nitrogens of Gly64 and Val65 coordinate the arginine carboxylate. Glu314, one of proposed acid-base catalytic residues, did not interact with arginine in the binary complex. This residue is located in the flexible loop 310-320 that covers the active site and only stabilizes in the LvAK-TSAC. This is the first binary complex crystal structure of a guanidine kinase in complex with the guanidine substrate and could give insights into the nature of the early steps of phosphagen biosynthesis.
A gene coding for lysozyme from the insect Manduca sexta (Ms-lyz) was expressed in Escherichia coli. The protein was produced as an insoluble cytoplasmic inclusion body which was denatured in 8 M: guanidine-HCl, renatured and purified by affinity and ion-exchange chromatography. The N-terminal sequence and the activity of the recombinant protein against Micrococcus luteus confirmed that correct expression had occurred. When Ms-lyz activity was compared to hen egg white lysozyme, the insect lysozyme was active at lower temperatures. These results demonstrate the feasibility of producing a disulfide-bonded lysozyme enzyme in bacteria and suggest that the insect Ms-lyz is an interesting system for further development of an antibacterial functional at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.