Laser cladding can be used for reclamation or for improving the corrosion resistance of engineering components. However, the process introduces substantial levels of residual stress, which can exacerbate corrosion. In this study, the effectiveness of different residual stress mitigation strategies was investigated. Laser clad overlays were produced by melting an austenitic stainless steel powder onto either an austenitic stainless steel or a mild steel substrate. Residual stresses were measured, using the hole-drilling technique, in the as-clad condition as well as after either laser shock peening (LSP) or post-weld heat treatment (PWHT). Samples were then subjected to corrosion testing. In all cases, LSP delayed the onset of corrosion cracks. However, PWHT was only effective when the substrate and overlay materials matched. This paper is part of a Themed Issue on Measurement, modelling and mitigation of residual stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.