The purpose of the present paper is to give a formulation of the simple theory of types which incorporates certain features of the calculus of λ-conversion. A complete incorporation of the calculus of λ-conversion into the theory of types is impossible if we require that λx and juxtaposition shall retain their respective meanings as an abstraction operator and as denoting the application of function to argument. But the present partial incorporation has certain advantages from the point of view of type theory and is offered as being of interest on this basis (whatever may be thought of the finally satisfactory character of the theory of types as a foundation for logic and mathematics).For features of the formulation which are not immediately connected with the incorporation of λ-conversion, we are heavily indebted to Whitehead and Russell, Hilbert and Ackermann, Hilbert and Bernays, and to forerunners of these, as the reader familiar with the works in question will recognize.The class of type symbols is described by the rules that ı and o are each type symbols and that if α and β are type symbols then (αβ) is a type symbol: it is the least class of symbols which contains the symbols ı and o and is closed under the operation of forming the symbol (αβ) from the symbols α and β.
In a recent paper the author has proposed a definition of the commonly used term “effectively calculable” and has shown on the basis of this definition that the general case of the Entscheidungsproblem is unsolvable in any system of symbolic logic which is adequate to a certain portion of arithmetic and is ω-consistent. The purpose of the present note is to outline an extension of this result to the engere Funktionenkalkul of Hilbert and Ackermann.In the author's cited paper it is pointed out that there can be associated recursively with every well-formed formula a recursive enumeration of the formulas into which it is convertible. This means the existence of a recursively defined function a of two positive integers such that, if y is the Gödel representation of a well-formed formula Y then a(x, y) is the Gödel representation of the xth formula in the enumeration of the formulas into which Y is convertible.Consider the system L of symbolic logic which arises from the engere Funktionenkalkül by adding to it: as additional undefined symbols, a symbol 1 for the number 1 (regarded as an individual), a symbol = for the propositional function = (equality of individuals), a symbol s for the arithmetic function x+1, a symbol a for the arithmetic function a described in the preceding paragraph, and symbols b1, b2, …, bk for the auxiliary arithmetic functions which are employed in the recursive definition of a; and as additional axioms, the recursion equations for the functions a, b1, b2, …, bk (expressed with free individual variables, the class of individuals being taken as identical with the class of positive integers), and two axioms of equality, x = x, and x = y →[F(x)→F(y)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.