Abstract. Spatially representative estimates of surface energy exchange from field measurements are required for improving and validating Earth system models and satellite remote sensing algorithms. The scarcity of flux measurements can limit understanding of ecohydrological responses to climate warming, especially in remote regions with limited infrastructure. Direct field measurements often apply the eddy covariance method on stationary towers, but recently, drone-based measurements of temperature, humidity, and wind speed have been suggested as a viable alternative to quantify the turbulent fluxes of sensible (H) and latent heat (LE). A data assimilation framework to infer uncertainty-aware surface flux estimates from sparse and noisy drone-based observations is developed and tested using a turbulence-resolving large eddy simulation (LES) as a forward model to connect surface fluxes to drone observations. The proposed framework explicitly represents the sequential collection of drone data, accounts for sensor noise, includes uncertainty in boundary and initial conditions, and jointly estimates the posterior distribution of a multivariate parameter space. Assuming typical flight times and observational errors of light-weight, multi-rotor drone systems, we first evaluate the information gain and performance of different ensemble-based data assimilation schemes in experiments with synthetically generated observations. It is shown that an iterative ensemble smoother outperforms both the non-iterative ensemble smoother and the particle batch smoother in the given problem, yielding well-calibrated posterior uncertainty with continuous ranked probability scores of 12 W m−2 for both H and LE, with standard deviations of 37 W m−2 (H) and 46 W m−2 (LE) for a 12 min vertical step profile by a single drone. Increasing flight times, using observations from multiple drones, and further narrowing the prior distributions of the initial conditions are viable for reducing the posterior spread. Sampling strategies prioritizing space–time exploration without temporal averaging, instead of hovering at fixed locations while averaging, enhance the non-linearities in the forward model and can lead to biased flux results with ensemble-based assimilation schemes. In a set of 18 real-world field experiments at two wetland sites in Norway, drone data assimilation estimates agree with independent eddy covariance estimates, with root mean square error values of 37 W m−2 (H), 52 W m−2 (LE), and 58 W m−2 (H+LE) and correlation coefficients of 0.90 (H), 0.40 (LE), and 0.83 (H+LE). While this comparison uses the simplifying assumptions of flux homogeneity, stationarity, and flat terrain, it is emphasized that the drone data assimilation framework is not confined to these assumptions and can thus readily be extended to more complex cases and other scalar fluxes, such as for trace gases in future studies.
Abstract. Spatially representative estimates of surface energy exchange from field measurements are required for improving and validating Earth system models as well as satellite remote sensing algorithms. The scarcity of flux measurements can limit understanding of ecohydrological responses to climate warming, especially in remote regions with limited infrastructure. Direct field measurements often apply the eddy covariance method on stationary towers, but recently drone-based measurements of temperature, humidity, and wind speed have been suggested as a viable alternative to quantify the turbulent fluxes of sensible (H) and latent heat (LE). A data assimilation framework to infer uncertainty-aware surface flux estimates from sparse and noisy drone-based observations is developed and tested using a turbulence-resolving large eddy simulation (LES) as a forward model to connect surface fluxes to drone observations. The proposed framework explicitly represents the sequential collection of drone data, accounts for sensor noise, includes uncertainty in boundary and initial conditions, and jointly estimates the posterior distribution of a multivariate parameter space. Assuming typical flight times and observational errors of light-weight, multi-rotor drone systems, we first evaluate the information gain and performance of different ensemble-based data assimilation schemes in experiments with synthetically generated observations. It is shown that an iterative ensemble smoother outperforms both the non-iterative ensemble smoother and the particle batch smoother in the given problem, yielding low bias and variance posterior distributions with continuous ranked probability scores of 12 W m-2 for both H and LE with standard deviations of 37 W m-2 (H) and 46 W m-2 (LE) for a 12 min vertical step profile by a single drone. Increasing flight times, using observations from multiple drones, and further narrowing the prior distributions of the initial conditions, are viable to reducing the posterior spread. Sampling strategies prioritizing space-time exploration instead of temporal averaging at fixed locations enhance the non-linearities in the forward model and can lead to biased flux results with ensemble-based assimilation schemes. In a set of 18 real-world field experiments at two wetland sites in Norway, drone data assimilation estimates agree with independent eddy covariance estimates, with root-mean-square error values of 37 W m-2 (H), 52 W m-2 (LE), and 58 W m-2 (H + LE), and correlation coefficients of 0.90 (H), 0.40 (LE), and 0.83 (H + LE). While this comparison uses the simplifying assumptions of flux homogeneity, stationarity, and flat terrain, it is emphasized that the drone data assimilation framework is not confined to these assumptions and can thus readily be extended to more complex cases and other scalar fluxes, such as for trace gases in future studies.
Achieving good reproducibility in fluid flow experiments can be challenging, in particular in scenarios where the experimental boundary conditions are obscure. We use computational uncertainty quantification (UQ) to evaluate the influence of uncertain inflow conditions on the reproducibility of experiments with swirling flow. Using a nonintrusive polynomial chaos method in combination with a computational fluid dynamics (CFD) code, we obtain the expectation and variance of the velocity fields downstream from symmetric and asymmetric swirl disturbance generators. Our results suggest that the flow patterns downstream from the asymmetric swirl disturbance generator are more reproducible than the flow patterns downstream from the symmetric swirl disturbance generator. This confirms that the inherent breaking of symmetry eliminates instability mechanisms in the wake of the disturber, thereby creating more stable swirling patterns that make the experiments more reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.