The excited compound nucleus 17 O* has been studied over (n,α) and (α,n) cross sections modelling, respectively for 16 O and 13 C targets in their ground states. The modelling is fulfilled within the Reich-Moore formalism. We were able to calculate the (α,n) cross section by two separate ways: the direct kinematic standard route and by inversion of the (n,α) cross section using the compound nucleus hypothesis. Resonance parameters of the resolved resonance range (0 to 6 MeV) were borrowed from the CIELO project. In a first stage, the modelling is carried out in the referential of the incident particle (either way neutron or α) requesting conversion of the CIELO neutron-type resonance parameters to the α-type. In a second stage, the implementation is uniquely designed in the center of mass system of the excited compound nucleus. The resonance parameters are thus converted in that unique reference framework. The present investigation shows the consistency of the kinetic transformation that relies on the compound nucleus hypothesis.
The ground state of some Barium isotopes has been investigated in the framework of the parity-symmetry projection of the Highly Truncated Diagonalization Approach (HTDA), which is suited to treat the correlations in an explicitly particle-number conserving microscopic approach. A Skyrme energy -density functional using the SkM∗ interactions has been considered to treat the particle-hole channel, whereas a density-independent δ force has been adopted for the residual interaction. The obtained results are compared with the previous calculations using the Woods-Saxon potentials
The traditional methodology of nuclear data evaluation is showing its limitations in reducing significantly the uncertainties in neutron cross sections below their current level. This suggests that a new approach should be considered. This work aims at establishing that a major qualitative improvement is possible by changing the reference framework historically used for evaluating nuclear model data. The central idea is to move from the restrictive framework of the incident neutron and target nucleus to the more general framework of the excited compound-system. Such a change, which implies the simultaneous modeling of all the reactions leading to the same compound-system, opens up the possibility of direct comparisons between nuclear model parameters, whether those are derived for reactor physics applications, astrophysics or basic nuclear spectroscopy studies. This would have the double advantage of bringing together evaluation activities performed separately, and of pooling experimental databases and basic theoretical nuclear parameter files. A consistent multichannel modeling methodology using the TORA module of the CONRAD code is demonstrated across the evaluation of differential and angle-integrated neutron cross sections of 16O by fitting simultaneously incident-neutron direct kinematic reactions and incident-alpha inverse kinematic reactions without converting alpha data into the neutron laboratory system. The modeling is fulfilled within the Reich-Moore formalism and an unique set of fitted resonance parameters related to the 17O* compound-system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.